B. R. Hunt, “Super-resolution of images: algorithms, principles, and performance,” Int. J. Imaging Syst. Technol. 6, 297–304 (1995).

[CrossRef]

Y. L. Kosarev, “On the superresolution limit in signal reconstruction,” Sov. J. Commun. Technol. Electron. 35, 90–108 (1990).

M. Bertero and E. R. Pike, “Resolution in diffraction-limited imaging, a singular value analysis I. The case of coherent illumination,” Opt. Acta 29, 727–746 (1982).

[CrossRef]

H. J. Landau and H. O. Pollack, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – III: the dimension of the space of essentially time-and band-limited signals,” Bell Syst. Tech. J. 41, 1295–1336 (1962).

D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – I,” Bell Syst. Tech. J. 40, 43–63 (1961).

H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – II,” Bell Syst. Tech. J. 40, 65–84 (1961).

M. Bertero and E. R. Pike, “Resolution in diffraction-limited imaging, a singular value analysis I. The case of coherent illumination,” Opt. Acta 29, 727–746 (1982).

[CrossRef]

M. Bertero and C. De Mol, “Super-resolution by data inversion,” in Progress in Optics XXXVI, E. Wolf, ed. (Elsevier, Amsterdam, 1996), pp. 129–178.

M. Bertero and C. De Mol, “Super-resolution by data inversion,” in Progress in Optics XXXVI, E. Wolf, ed. (Elsevier, Amsterdam, 1996), pp. 129–178.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in FORTRAN, 2nd ed., (Cambridge Press, Cambridge, 1996), pp. 134–135.

B. R. Frieden, “Evaluation, design, and extrapolation methods for optical signals based on the use of prolate functions,” in Progress in Optics IX, E. Wolf, ed. (North-Holland, Amsterdam, 1971), pp. 313–407.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Addison-Wesley, Reading, 1992), ch. 5.

J. J. Green and B. R. Hunt, “Improved restoration of space object imagery,” J. Opt. Soc. Am. A 16, 2859–2865 (1999).

[CrossRef]

B. R. Hunt, “Super-resolution of images: algorithms, principles, and performance,” Int. J. Imaging Syst. Technol. 6, 297–304 (1995).

[CrossRef]

P. J. Sementilli, B. R. Hunt, and M. S. Nadar, “Analysis of the limit to superresolution in coherent imaging,” J. Opt. Soc. Am. A 10, 2265–2276 (1993).

[CrossRef]

Y. L. Kosarev, “On the superresolution limit in signal reconstruction,” Sov. J. Commun. Technol. Electron. 35, 90–108 (1990).

H. J. Landau and H. O. Pollack, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – III: the dimension of the space of essentially time-and band-limited signals,” Bell Syst. Tech. J. 41, 1295–1336 (1962).

H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – II,” Bell Syst. Tech. J. 40, 65–84 (1961).

M. Bertero and E. R. Pike, “Resolution in diffraction-limited imaging, a singular value analysis I. The case of coherent illumination,” Opt. Acta 29, 727–746 (1982).

[CrossRef]

H. J. Landau and H. O. Pollack, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – III: the dimension of the space of essentially time-and band-limited signals,” Bell Syst. Tech. J. 41, 1295–1336 (1962).

H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – II,” Bell Syst. Tech. J. 40, 65–84 (1961).

D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – I,” Bell Syst. Tech. J. 40, 43–63 (1961).

B. Porat, Digital Processing of Random Signals, Theory and Methods (Prentice-Hall, Englewood Cliffs, 1994), pp. 65–67.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in FORTRAN, 2nd ed., (Cambridge Press, Cambridge, 1996), pp. 134–135.

M. C. Roggemann and B. Welsh, Imaging Through Turbulence (CRC Press, Boca Raton, 1996), p. 49.

D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – I,” Bell Syst. Tech. J. 40, 43–63 (1961).

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in FORTRAN, 2nd ed., (Cambridge Press, Cambridge, 1996), pp. 134–135.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in FORTRAN, 2nd ed., (Cambridge Press, Cambridge, 1996), pp. 134–135.

M. C. Roggemann and B. Welsh, Imaging Through Turbulence (CRC Press, Boca Raton, 1996), p. 49.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Addison-Wesley, Reading, 1992), ch. 5.

H. J. Landau and H. O. Pollack, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – III: the dimension of the space of essentially time-and band-limited signals,” Bell Syst. Tech. J. 41, 1295–1336 (1962).

D. Slepian and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – I,” Bell Syst. Tech. J. 40, 43–63 (1961).

H. J. Landau and H. O. Pollak, “Prolate spheroidal wave functions, Fourier analysis and uncertainty – II,” Bell Syst. Tech. J. 40, 65–84 (1961).

C. L. Matson, “Fourier spectrum extrapolation and enhancement using support constraints,” IEEE Trans. Sig. Process. 42, 156–163 (1994).

[CrossRef]

B. R. Hunt, “Super-resolution of images: algorithms, principles, and performance,” Int. J. Imaging Syst. Technol. 6, 297–304 (1995).

[CrossRef]

J. J. Green and B. R. Hunt, “Improved restoration of space object imagery,” J. Opt. Soc. Am. A 16, 2859–2865 (1999).

[CrossRef]

P. J. Sementilli, B. R. Hunt, and M. S. Nadar, “Analysis of the limit to superresolution in coherent imaging,” J. Opt. Soc. Am. A 10, 2265–2276 (1993).

[CrossRef]

H. Liu, Y. Yan, Q. Tan, and G. Jin, “Theories for the design of diffractive superresolution elements and limits of optical superresolution,” J. Opt. Soc. Am. A 19, 2185–2193 (2002).

[CrossRef]

S. Bhattacharjee and M. K. Sundareshan, “Mathematical extrapolation of image spectrum for constraint-set design and set-theoretic superresolution,” J. Opt. Soc. Am. A 20, 1516–1527 (2003).

[CrossRef]

C. L. Matson, “Variance reduction in Fourier spectra and their corresponding images with the use of support constraints,” J. Opt. Soc. Am. A 11, 97–106 (1994).

[CrossRef]

M. Bertero and E. R. Pike, “Resolution in diffraction-limited imaging, a singular value analysis I. The case of coherent illumination,” Opt. Acta 29, 727–746 (1982).

[CrossRef]

Y. L. Kosarev, “On the superresolution limit in signal reconstruction,” Sov. J. Commun. Technol. Electron. 35, 90–108 (1990).

M. Bertero and C. De Mol, “Super-resolution by data inversion,” in Progress in Optics XXXVI, E. Wolf, ed. (Elsevier, Amsterdam, 1996), pp. 129–178.

M. C. Roggemann and B. Welsh, Imaging Through Turbulence (CRC Press, Boca Raton, 1996), p. 49.

B. R. Frieden, “Evaluation, design, and extrapolation methods for optical signals based on the use of prolate functions,” in Progress in Optics IX, E. Wolf, ed. (North-Holland, Amsterdam, 1971), pp. 313–407.

B. Porat, Digital Processing of Random Signals, Theory and Methods (Prentice-Hall, Englewood Cliffs, 1994), pp. 65–67.

R. C. Gonzalez and R. E. Woods, Digital Image Processing (Addison-Wesley, Reading, 1992), ch. 5.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in FORTRAN, 2nd ed., (Cambridge Press, Cambridge, 1996), pp. 134–135.