Abstract

We numerically study the spectral response of ‘U’-shaped split-ring-resonators at normal incidence with respect to the resonator plane. Based on the evaluation of the near-field patterns of the resonances and their geometry-dependent spectral positions, we obtain a comprehensive and consistent picture of their origin. We conclude that all resonances can be understood as plasmonic resonances of increasing order of the entire structure. In particular, for an electrical field polarized parallel to the gap the so-called LC-resonance corresponds to the fundamental plasmonic mode and, contrary to earlier interpretations, the electrical resonance is a second order plasmon mode of the entire structure. The presence of further higher order modes is discussed.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Engineering resonances in infrared metamaterials

Boubacar Kanté, André de Lustrac, Jean-Michel Lourtioz, and Frédérique Gadot
Opt. Express 16(10) 6774-6784 (2008)

The origin of magnetic polarizability in metamaterials at optical frequencies - an electrodynamic approach

Carsten Rockstuhl, Thomas Zentgraf, Ekaterina Pshenay-Severin, Jörg Petschulat, Arkadi Chipouline, Jürgen Kuhl, Thomas Pertsch, Harald Giessen, and Falk Lederer
Opt. Express 15(14) 8871-8883 (2007)

A standing-wave interpretation of plasmon resonance excitation in split-ring resonators

Wen-Yu Chen and Chun-Hung Lin
Opt. Express 18(13) 14280-14292 (2010)

References

  • View by:
  • |
  • |
  • |

  1. John D. JoannopoulosPhotonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).
  2. D. R. Smith, S. Schultz, P. Markoš, and C.M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
    [Crossref]
  3. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, New York, 1982).
  4. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of α and µ,” Sov. Phys. Usp. 10, 509–514 (1968).
    [Crossref]
  5. J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [Crossref] [PubMed]
  6. W. Rotman, “Plasma Simulation by Artificial Dielectrics and Parallel-Plate Media,” IRE Trans. Ant. Propagat. 10, 82–95 (1962).
    [Crossref]
  7. S. A. Schelkunoff and H. T. FriisAntennas: Theory and Practice (New York: John Wiley & Sons, 1952).
  8. J. P. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors, and Enhanced Non-Linear Phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
    [Crossref]
  9. L. Lewin, “The electrical constants of a material loaded with spherical particles,” Proc. Inst. Elec. Eng., Part 3,  94, 65–68 (1947).
  10. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005).
    [Crossref]
  11. G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30, 3198–3200 (2005).
    [Crossref] [PubMed]
  12. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
    [Crossref] [PubMed]
  13. D. R. Smith, W. J. Padila, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [Crossref] [PubMed]
  14. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1361–1353 (2004).
    [Crossref]
  15. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C.M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
    [Crossref]
  16. N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
    [Crossref] [PubMed]
  17. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
    [Crossref]
  18. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).
    [Crossref]
  19. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
    [Crossref]
  20. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  21. A. Taflove and S. C. HagnessComputational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2005).
  22. R. W. Wood, “Anomalous Diffraction Grating,” Phys. Rev. 48, 928–936 (1935).
    [Crossref]
  23. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett. 95, 258403 (2005).
    [Crossref]

2006 (1)

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

2005 (5)

2004 (2)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1361–1353 (2004).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C.M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

2002 (1)

D. R. Smith, S. Schultz, P. Markoš, and C.M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

2000 (2)

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

D. R. Smith, W. J. Padila, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

1999 (1)

J. P. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors, and Enhanced Non-Linear Phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

1997 (1)

1996 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of α and µ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

1962 (1)

W. Rotman, “Plasma Simulation by Artificial Dielectrics and Parallel-Plate Media,” IRE Trans. Ant. Propagat. 10, 82–95 (1962).
[Crossref]

1947 (1)

L. Lewin, “The electrical constants of a material loaded with spherical particles,” Proc. Inst. Elec. Eng., Part 3,  94, 65–68 (1947).

1935 (1)

R. W. Wood, “Anomalous Diffraction Grating,” Phys. Rev. 48, 928–936 (1935).
[Crossref]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett. 95, 258403 (2005).
[Crossref]

Brueck, S. R. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Cai, W.

Chettiar, U. K.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett. 95, 258403 (2005).
[Crossref]

Dolling, G.

Drachev, V. P.

Economou, E. N.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
[Crossref] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C.M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30, 3198–3200 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1361–1353 (2004).
[Crossref]

Etrich, C.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Fan, W.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Friis, H. T.

S. A. Schelkunoff and H. T. FriisAntennas: Theory and Practice (New York: John Wiley & Sons, 1952).

Giessen, H.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Gundogdu, T. F.

Guo, H.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. HagnessComputational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2005).

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett. 95, 258403 (2005).
[Crossref]

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett. 95, 258403 (2005).
[Crossref]

Holden, A. J.

J. P. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors, and Enhanced Non-Linear Phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Joannopoulos, John D.

John D. JoannopoulosPhotonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kafesaki, M.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
[Crossref] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C.M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Katsarakis, N.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
[Crossref] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C.M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

Kildishev, A. V.

Konstantinidis, G.

Koschny, T.

N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, “Magnetic response of split-ring resonators in the far-infrared frequency regime,” Opt. Lett. 30, 1348–1350 (2005).
[Crossref] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C.M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1361–1353 (2004).
[Crossref]

Kostopoulos, A.

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett. 95, 258403 (2005).
[Crossref]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett. 95, 258403 (2005).
[Crossref]

Kuhl, J.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Landau, L. D.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, New York, 1982).

Lederer, F.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Lewin, L.

L. Lewin, “The electrical constants of a material loaded with spherical particles,” Proc. Inst. Elec. Eng., Part 3,  94, 65–68 (1947).

Li, L.

Lifshitz, E. M.

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, New York, 1982).

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30, 3198–3200 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1361–1353 (2004).
[Crossref]

Liu, N.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Loa, I.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Malloy, K. J.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Markoš, P.

D. R. Smith, S. Schultz, P. Markoš, and C.M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padila, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Osgood, R. M.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Padila, W. J.

D. R. Smith, W. J. Padila, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Panoiu, N. C.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Penciu, R. S.

Pendry, J. B.

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Pendry, J. P.

J. P. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors, and Enhanced Non-Linear Phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Robbins, D. J.

J. P. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors, and Enhanced Non-Linear Phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Rockstuhl, C.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett. 95, 258403 (2005).
[Crossref]

Rotman, W.

W. Rotman, “Plasma Simulation by Artificial Dielectrics and Parallel-Plate Media,” IRE Trans. Ant. Propagat. 10, 82–95 (1962).
[Crossref]

Sarychev, A. K.

Schelkunoff, S. A.

S. A. Schelkunoff and H. T. FriisAntennas: Theory and Practice (New York: John Wiley & Sons, 1952).

Schultz, S.

D. R. Smith, S. Schultz, P. Markoš, and C.M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

D. R. Smith, W. J. Padila, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Shalaev, V. M.

Smith, D. R.

D. R. Smith, S. Schultz, P. Markoš, and C.M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

D. R. Smith, W. J. Padila, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Soukoulis, C. M.

Soukoulis, C.M.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C.M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C.M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Stewart, W. J.

J. P. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors, and Enhanced Non-Linear Phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

Syassen, K.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Taflove, A.

A. Taflove and S. C. HagnessComputational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2005).

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of α and µ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Vier, D. C.

D. R. Smith, W. J. Padila, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett. 95, 258403 (2005).
[Crossref]

Wegener, M.

G. Dolling, C. Enkrich, M. Wegener, J. F. Zhou, C. M. Soukoulis, and S. Linden, “Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials,” Opt. Lett. 30, 3198–3200 (2005).
[Crossref] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1361–1353 (2004).
[Crossref]

Wood, R. W.

R. W. Wood, “Anomalous Diffraction Grating,” Phys. Rev. 48, 928–936 (1935).
[Crossref]

Yuan, H.-K.

Zentgraf, T.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Zhang, S.

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

Zhou, J.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1361–1353 (2004).
[Crossref]

Zhou, J. F.

Appl. Phys. B (1)

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
[Crossref]

Appl. Phys. Lett. (1)

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C.M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84, 2943–2945 (2004).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

J. P. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from Conductors, and Enhanced Non-Linear Phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
[Crossref]

IRE Trans. Ant. Propagat. (1)

W. Rotman, “Plasma Simulation by Artificial Dielectrics and Parallel-Plate Media,” IRE Trans. Ant. Propagat. 10, 82–95 (1962).
[Crossref]

J. Opt. Soc. Am. A (2)

Opt. Lett. (3)

Phys. Rev. (1)

R. W. Wood, “Anomalous Diffraction Grating,” Phys. Rev. 48, 928–936 (1935).
[Crossref]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

D. R. Smith, S. Schultz, P. Markoš, and C.M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).
[Crossref]

Phys. Rev. Lett. (4)

S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, “Experimental Demonstration of Near-Infrared Negative-Index Metamaterials,” Phys. Rev. Lett. 95, 137404 (2005).
[Crossref] [PubMed]

D. R. Smith, W. J. Padila, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[Crossref] [PubMed]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver Nanowires as Surface Plasmon Resonators,” Phys. Rev. Lett. 95, 258403 (2005).
[Crossref]

J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[Crossref] [PubMed]

Proc. Inst. Elec. Eng., Part 3 (1)

L. Lewin, “The electrical constants of a material loaded with spherical particles,” Proc. Inst. Elec. Eng., Part 3,  94, 65–68 (1947).

Science (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic Response of Metamaterials at 100 Terahertz,” Science 306, 1361–1353 (2004).
[Crossref]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of α and µ,” Sov. Phys. Usp. 10, 509–514 (1968).
[Crossref]

Other (4)

John D. JoannopoulosPhotonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).

L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon Press, New York, 1982).

S. A. Schelkunoff and H. T. FriisAntennas: Theory and Practice (New York: John Wiley & Sons, 1952).

A. Taflove and S. C. HagnessComputational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Typical arrangement of the structure in a) and schematic sketch of the pertinent SRR along with a definition of the geometrical parameters in b).

Fig. 2.
Fig. 2.

Reflection from SRRs with a fully opened gap. The electric field is polarized in a) parallel to the gap and in b) perpendicular to it. The resonances are labeled in the figure with an arrow and an appropriate number.

Fig. 3.
Fig. 3.

Magnitude of the electric field distribution for the first three plasmon modes. The illuminating electric field Eyi is chosen to be perpendicular to the gap (y-polarized). The fields are normalized to the illuminating electric field.

Fig. 4.
Fig. 4.

Magnitude of the electric field distribution for the first three plasmon modes. The illuminating electric field Exi is chosen to be polarized parallel to the gap (x-polarized). The fields are normalized to the illuminating electric field.

Fig. 5.
Fig. 5.

Reflection from SRRs as a function of the leg. The electric field is polarized in a) parallel to the gap and in b) perpendicular to it. The geometries of the pertinent structures are shown in the upper part of the figure in colors according to the lines.

Fig. 6.
Fig. 6.

Resonance frequency of the first two modes as a function of the length of of the ‘U’-structure perpendicular to the gap for the two possible polarizations.

Metrics