Abstract

Optical plasmon-polariton modes confined in both transverse dimensions to significantly less than a wavelength are exhibited in open waveguides structured as sharp metal wedges. The analysis reveals two distinctive modes corresponding to a localized mode on the wedge point and surface mode propagation on the abruptly bent interface. These predictions are accompanied by unique field distributions and dispersion characteristics.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
    [Crossref] [PubMed]
  2. P. Berini, “Plasmon-polariton modes guided by a metal film of a finite width bounded by different dielectrics,” Opt. Express 7, 329 (2000).
    [Crossref] [PubMed]
  3. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Physics and Materials 11, 65 (2002).
    [Crossref]
  4. L. Dobrzynski and A. A. Maradudin, “Electrostatic edge modes in a Dielectric Wedge,” Phys. Rev. B 6, 3810 (1972).
    [Crossref]
  5. A. Eguiluz and A. A. Maradudin, “Electrostatic edge modes along a parabolic wedge,” Phys. Rev. B 14, 5526 (1976).
    [Crossref]
  6. A. D. Boardman, R. Garcia-Molina, A. Gras-Marti, and E. Louis, “Electrostatic edge modes of a hyperbolic dielectric wedge: Analytical solution,” Phys. Rev. B 32, 6045 (1985).
    [Crossref]
  7. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
    [Crossref]
  8. I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
    [Crossref]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
    [Crossref] [PubMed]
  10. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069 (2004).
    [Crossref] [PubMed]
  11. G. Z. Forristall and J. D. Ingram, “Evaluation of distributions useful in Kontorovich-Lebedev transform theory,” SIAM J. Math. Anal. 3, 561 (1972).
    [Crossref]
  12. B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Light. Tech. 12, 6 (1994).
    [Crossref]
  13. H. Reather, Surface plasmon (Springer, Berlin, 1988).
  14. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polariton on planar metallic waveguides,” Opt. Express 12, 4072 (2004).
    [Crossref] [PubMed]

2005 (2)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref] [PubMed]

2004 (2)

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

2002 (2)

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Physics and Materials 11, 65 (2002).
[Crossref]

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[Crossref]

2000 (1)

1994 (1)

B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Light. Tech. 12, 6 (1994).
[Crossref]

1985 (1)

A. D. Boardman, R. Garcia-Molina, A. Gras-Marti, and E. Louis, “Electrostatic edge modes of a hyperbolic dielectric wedge: Analytical solution,” Phys. Rev. B 32, 6045 (1985).
[Crossref]

1976 (1)

A. Eguiluz and A. A. Maradudin, “Electrostatic edge modes along a parabolic wedge,” Phys. Rev. B 14, 5526 (1976).
[Crossref]

1972 (2)

L. Dobrzynski and A. A. Maradudin, “Electrostatic edge modes in a Dielectric Wedge,” Phys. Rev. B 6, 3810 (1972).
[Crossref]

G. Z. Forristall and J. D. Ingram, “Evaluation of distributions useful in Kontorovich-Lebedev transform theory,” SIAM J. Math. Anal. 3, 561 (1972).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

Berini, P.

Boardman, A. D.

A. D. Boardman, R. Garcia-Molina, A. Gras-Marti, and E. Louis, “Electrostatic edge modes of a hyperbolic dielectric wedge: Analytical solution,” Phys. Rev. B 32, 6045 (1985).
[Crossref]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref] [PubMed]

Dobrzynski, L.

L. Dobrzynski and A. A. Maradudin, “Electrostatic edge modes in a Dielectric Wedge,” Phys. Rev. B 6, 3810 (1972).
[Crossref]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

Eguiluz, A.

A. Eguiluz and A. A. Maradudin, “Electrostatic edge modes along a parabolic wedge,” Phys. Rev. B 14, 5526 (1976).
[Crossref]

Fainman, Y.

Forristall, G. Z.

G. Z. Forristall and J. D. Ingram, “Evaluation of distributions useful in Kontorovich-Lebedev transform theory,” SIAM J. Math. Anal. 3, 561 (1972).
[Crossref]

Fukui, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

Garcia-Molina, R.

A. D. Boardman, R. Garcia-Molina, A. Gras-Marti, and E. Louis, “Electrostatic edge modes of a hyperbolic dielectric wedge: Analytical solution,” Phys. Rev. B 32, 6045 (1985).
[Crossref]

Gramotnev, D. K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069 (2004).
[Crossref] [PubMed]

Gras-Marti, A.

A. D. Boardman, R. Garcia-Molina, A. Gras-Marti, and E. Louis, “Electrostatic edge modes of a hyperbolic dielectric wedge: Analytical solution,” Phys. Rev. B 32, 6045 (1985).
[Crossref]

Haraguchi, M.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

Ingram, J. D.

G. Z. Forristall and J. D. Ingram, “Evaluation of distributions useful in Kontorovich-Lebedev transform theory,” SIAM J. Math. Anal. 3, 561 (1972).
[Crossref]

Louis, E.

A. D. Boardman, R. Garcia-Molina, A. Gras-Marti, and E. Louis, “Electrostatic edge modes of a hyperbolic dielectric wedge: Analytical solution,” Phys. Rev. B 32, 6045 (1985).
[Crossref]

Maradudin, A. A.

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[Crossref]

A. Eguiluz and A. A. Maradudin, “Electrostatic edge modes along a parabolic wedge,” Phys. Rev. B 14, 5526 (1976).
[Crossref]

L. Dobrzynski and A. A. Maradudin, “Electrostatic edge modes in a Dielectric Wedge,” Phys. Rev. B 6, 3810 (1972).
[Crossref]

Matsuo, S.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

Nezhad, M. P.

Novikov, I. V.

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[Crossref]

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

Okamoto, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

Pile, D. F. P.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069 (2004).
[Crossref] [PubMed]

Podolskiy, V. A.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Physics and Materials 11, 65 (2002).
[Crossref]

Prade, B.

B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Light. Tech. 12, 6 (1994).
[Crossref]

Reather, H.

H. Reather, Surface plasmon (Springer, Berlin, 1988).

Sarychev, A. K.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Physics and Materials 11, 65 (2002).
[Crossref]

Shalaev, V. M.

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Physics and Materials 11, 65 (2002).
[Crossref]

Tetz, K.

Vinet, J. Y.

B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Light. Tech. 12, 6 (1994).
[Crossref]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[Crossref]

J. Light. Tech. (1)

B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Light. Tech. 12, 6 (1994).
[Crossref]

J. Nonlinear Physics and Materials (1)

V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes in metal nanowires and left-handed materials,” J. Nonlinear Physics and Materials 11, 65 (2002).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (4)

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[Crossref]

L. Dobrzynski and A. A. Maradudin, “Electrostatic edge modes in a Dielectric Wedge,” Phys. Rev. B 6, 3810 (1972).
[Crossref]

A. Eguiluz and A. A. Maradudin, “Electrostatic edge modes along a parabolic wedge,” Phys. Rev. B 14, 5526 (1976).
[Crossref]

A. D. Boardman, R. Garcia-Molina, A. Gras-Marti, and E. Louis, “Electrostatic edge modes of a hyperbolic dielectric wedge: Analytical solution,” Phys. Rev. B 32, 6045 (1985).
[Crossref]

Phys. Rev. Lett. (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref] [PubMed]

SIAM J. Math. Anal. (1)

G. Z. Forristall and J. D. Ingram, “Evaluation of distributions useful in Kontorovich-Lebedev transform theory,” SIAM J. Math. Anal. 3, 561 (1972).
[Crossref]

Other (1)

H. Reather, Surface plasmon (Springer, Berlin, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Metal wedge waveguide surrounded by air. (a) schematics (b) EeHo mode dispersion relations for 360 gold wedge.

Fig. 2.
Fig. 2.

Electric field components (absolute value, A.U.) at pt. I (β=6k0;ω=0.74ωp).

Fig. 3.
Fig. 3.

Electric field components (absolute value, A.U.) at pt. II (β=6k0;ω=0.69ωp).

Fig. 4.
Fig. 4.

Tangential Pointing vector (Sz) (absolute value, A.U.) at: (a) pt. II, (b) pt. I

Fig. 5.
Fig. 5.

Electric field components (absolute value, A.U.) at pt. III (β=8k0;ω=0.7ωp).

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

{ ( i ) E ˜ M = E ˜ D ( iii ) θ E ˜ M = f 1 θ E ˜ D f 2 r r H ˜ D ( ii ) H ˜ M = H ˜ D ( iv ) θ E ˜ M = f 3 r r E ˜ D f 4 θ H ˜ D
E z e = exp ( i β z ) { dv { a v K iv ( q M r ) cosh ( v ( θ α ) ) } θ [ 0 , 2 α ] dv { b v K iv ( q D r ) cosh ( v ( θ α π ) ) } θ [ 2 α , 2 π ]
v a v cosh ( v α ) G ( v , s ; q M q D ) = b s cosh ( s ( α + π ) ) π 2 2 s sinh ( π s )
v c v sinh ( v α ) G ( v , s ; q M q D ) = b s sinh ( s ( α + π ) ) π 2 2 s sinh ( π s )
v a v v sinh ( v α ) G ( v , s ; q M q D ) = f 1 b s sinh ( s ( α + π ) ) π 2 2 sinh ( π s ) f 2 v d v sinh ( v ( α + π ) H ( v , s )
v c v v cosh ( v α ) G ( v , s ; q M q D ) = f 3 v b v cosh ( v ( α + π ) ) H ( v , s ) + f 4 d s cosh ( s ( α + π ) ) π 2 2 sinh ( π s )
f 1 = ε D ε M q M 2 q D 2 ; f 2 = ω μ β ( ε M + ε D ) q D 2 ε M ; f 3 = ω ε 0 β ( ε M + ε D ) q D 2 ; f 4 = q M 2 q D 2 ;
G ( ξ 1 , ξ 2 ; τ ) = π 2 cos ( ξ 1 ln ( τ ) ) 2 ξ 1 sinh ( π ξ 1 ) δ ( ξ 1 ξ 2 ) + π 2 16 [ cosh ( π ξ 1 ) cosh ( π ξ 2 ) ] 1 g ( ξ 1 , ξ 2 ; τ )
g ( ξ 1 , ξ 2 ; τ ) = [ τ 2 1 ] τ i ξ 1 2 𝔽 1 ( 1 i ξ 1 + ξ 2 2 , 1 i ξ 1 ξ 2 2 ; 2 ; 1 τ 2 )
H ( ξ 1 , ξ 2 ) = π 2 2 [ cosh ( π ξ 1 ) cosh ( π ξ 2 ) ] 1 ; G ( ξ , ξ ; τ ) = 0 ; H ( ξ , ξ ) = 0 ;

Metrics