Abstract

We report the use of laser ablation of metal targets onto a glass substrate as a way of producing waveguiding devices. In the geometry employed, the nanosecond pulses used for the ablation pass through the glass substrate, and are focused on the metal surface, which is located in close proximity with the substrate. We present measurements of the refractive index profile obtained with this technique, and present a discussion of the physical mechanisms that produce the profiles measured.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S.I. Najafi, “Introduction to Glass Integrated Optics,” Artech House Inc. Massachusetts, 1992.
  2. E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express 12, 2264–2269 (2004).
    [CrossRef] [PubMed]
  3. K. Liu, E.Y.B. Pun, T.C. Sum, A.A. Bettiol, J.A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).
    [CrossRef]
  4. F. Chen, X.L. Wang, X.S. Li, L.L. Hu, Q.M. Lu, K.M. Wang, B.R. Shi, and D.Y. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass, Appl. Surf. Sci. 193, 92–101 (2002).
    [CrossRef]
  5. K.M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729–1731 (1996).
    [CrossRef] [PubMed]
  6. S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A. 77, 108–11 (2003).
    [CrossRef]
  7. A. Castelo, D. Nieto, M.T. Flores-Arias, C. Gómez-Reino, and X. de la Fuente, “Laser backwriting process on glass via ablation of metal targets,” in Lasers and Applications, Proc. SPIE 5958, K.M. Abramski, A. Lapucci, and E.F. Plinski, eds., 600–607, (2005).
  8. J. Bohandy, B.F. Kim, and F.J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60, 1538–1539.
  9. R. Göring and M. Rothhardt, “Application of the refracted near fied technique to multimode planar and channel waveguides in glass,” J. Opt. Commun. 7, 82–85 (1986).
    [CrossRef]
  10. P. Oberson, B. Gisin, B. Huttner, and N. Gisin, “Refracted near-field measurements of refractive index and geometry of silica-on-silicon integrated optical waveguides,” Appl. Opt. 37, 7268–7272 (1998).
    [CrossRef]

2005 (1)

A. Castelo, D. Nieto, M.T. Flores-Arias, C. Gómez-Reino, and X. de la Fuente, “Laser backwriting process on glass via ablation of metal targets,” in Lasers and Applications, Proc. SPIE 5958, K.M. Abramski, A. Lapucci, and E.F. Plinski, eds., 600–607, (2005).

2004 (2)

K. Liu, E.Y.B. Pun, T.C. Sum, A.A. Bettiol, J.A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).
[CrossRef]

E. Flores-Romero, G. V. Vázquez, H. Márquez, R. Rangel-Rojo, J. Rickards, and R. Trejo-Luna, “Planar waveguide lasers by proton implantation in Nd:YAG crystals,” Opt. Express 12, 2264–2269 (2004).
[CrossRef] [PubMed]

2003 (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A. 77, 108–11 (2003).
[CrossRef]

2002 (1)

F. Chen, X.L. Wang, X.S. Li, L.L. Hu, Q.M. Lu, K.M. Wang, B.R. Shi, and D.Y. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass, Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

1998 (1)

1996 (1)

1992 (1)

S.I. Najafi, “Introduction to Glass Integrated Optics,” Artech House Inc. Massachusetts, 1992.

1986 (1)

R. Göring and M. Rothhardt, “Application of the refracted near fied technique to multimode planar and channel waveguides in glass,” J. Opt. Commun. 7, 82–85 (1986).
[CrossRef]

Adrian, F.J.

J. Bohandy, B.F. Kim, and F.J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60, 1538–1539.

Bettiol, A.A.

K. Liu, E.Y.B. Pun, T.C. Sum, A.A. Bettiol, J.A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).
[CrossRef]

Bohandy, J.

J. Bohandy, B.F. Kim, and F.J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60, 1538–1539.

Burghoff, J.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A. 77, 108–11 (2003).
[CrossRef]

Castelo, A.

A. Castelo, D. Nieto, M.T. Flores-Arias, C. Gómez-Reino, and X. de la Fuente, “Laser backwriting process on glass via ablation of metal targets,” in Lasers and Applications, Proc. SPIE 5958, K.M. Abramski, A. Lapucci, and E.F. Plinski, eds., 600–607, (2005).

Chen, F.

F. Chen, X.L. Wang, X.S. Li, L.L. Hu, Q.M. Lu, K.M. Wang, B.R. Shi, and D.Y. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass, Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

Davis, K.M.

de la Fuente, X.

A. Castelo, D. Nieto, M.T. Flores-Arias, C. Gómez-Reino, and X. de la Fuente, “Laser backwriting process on glass via ablation of metal targets,” in Lasers and Applications, Proc. SPIE 5958, K.M. Abramski, A. Lapucci, and E.F. Plinski, eds., 600–607, (2005).

Flores-Arias, M.T.

A. Castelo, D. Nieto, M.T. Flores-Arias, C. Gómez-Reino, and X. de la Fuente, “Laser backwriting process on glass via ablation of metal targets,” in Lasers and Applications, Proc. SPIE 5958, K.M. Abramski, A. Lapucci, and E.F. Plinski, eds., 600–607, (2005).

Flores-Romero, E.

Gisin, B.

Gisin, N.

Gómez-Reino, C.

A. Castelo, D. Nieto, M.T. Flores-Arias, C. Gómez-Reino, and X. de la Fuente, “Laser backwriting process on glass via ablation of metal targets,” in Lasers and Applications, Proc. SPIE 5958, K.M. Abramski, A. Lapucci, and E.F. Plinski, eds., 600–607, (2005).

Göring, R.

R. Göring and M. Rothhardt, “Application of the refracted near fied technique to multimode planar and channel waveguides in glass,” J. Opt. Commun. 7, 82–85 (1986).
[CrossRef]

Hirao, K.

Hu, L.L.

F. Chen, X.L. Wang, X.S. Li, L.L. Hu, Q.M. Lu, K.M. Wang, B.R. Shi, and D.Y. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass, Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

Huttner, B.

Kim, B.F.

J. Bohandy, B.F. Kim, and F.J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60, 1538–1539.

Li, X.S.

F. Chen, X.L. Wang, X.S. Li, L.L. Hu, Q.M. Lu, K.M. Wang, B.R. Shi, and D.Y. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass, Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

Liu, K.

K. Liu, E.Y.B. Pun, T.C. Sum, A.A. Bettiol, J.A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).
[CrossRef]

Lu, Q.M.

F. Chen, X.L. Wang, X.S. Li, L.L. Hu, Q.M. Lu, K.M. Wang, B.R. Shi, and D.Y. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass, Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

Márquez, H.

Miura, K.

Najafi, S.I.

S.I. Najafi, “Introduction to Glass Integrated Optics,” Artech House Inc. Massachusetts, 1992.

Nieto, D.

A. Castelo, D. Nieto, M.T. Flores-Arias, C. Gómez-Reino, and X. de la Fuente, “Laser backwriting process on glass via ablation of metal targets,” in Lasers and Applications, Proc. SPIE 5958, K.M. Abramski, A. Lapucci, and E.F. Plinski, eds., 600–607, (2005).

Nolte, S.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A. 77, 108–11 (2003).
[CrossRef]

Oberson, P.

Pun, E.Y.B.

K. Liu, E.Y.B. Pun, T.C. Sum, A.A. Bettiol, J.A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).
[CrossRef]

Rangel-Rojo, R.

Rickards, J.

Rothhardt, M.

R. Göring and M. Rothhardt, “Application of the refracted near fied technique to multimode planar and channel waveguides in glass,” J. Opt. Commun. 7, 82–85 (1986).
[CrossRef]

Shen, D.Y.

F. Chen, X.L. Wang, X.S. Li, L.L. Hu, Q.M. Lu, K.M. Wang, B.R. Shi, and D.Y. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass, Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

Shi, B.R.

F. Chen, X.L. Wang, X.S. Li, L.L. Hu, Q.M. Lu, K.M. Wang, B.R. Shi, and D.Y. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass, Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

Sugimoto, N.

Sum, T.C.

K. Liu, E.Y.B. Pun, T.C. Sum, A.A. Bettiol, J.A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).
[CrossRef]

Trejo-Luna, R.

Tuennermann, A.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A. 77, 108–11 (2003).
[CrossRef]

van Kan, J.A.

K. Liu, E.Y.B. Pun, T.C. Sum, A.A. Bettiol, J.A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).
[CrossRef]

Vázquez, G. V.

Wang, K.M.

F. Chen, X.L. Wang, X.S. Li, L.L. Hu, Q.M. Lu, K.M. Wang, B.R. Shi, and D.Y. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass, Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

Wang, X.L.

F. Chen, X.L. Wang, X.S. Li, L.L. Hu, Q.M. Lu, K.M. Wang, B.R. Shi, and D.Y. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass, Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

Watt, F.

K. Liu, E.Y.B. Pun, T.C. Sum, A.A. Bettiol, J.A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).
[CrossRef]

Will, M.

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A. 77, 108–11 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A. (1)

S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, “Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics,” Appl. Phys. A. 77, 108–11 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

K. Liu, E.Y.B. Pun, T.C. Sum, A.A. Bettiol, J.A. van Kan, and F. Watt, “Erbium-doped waveguide amplifiers fabricated using focused proton beam writing,” Appl. Phys. Lett. 84, 684–686 (2004).
[CrossRef]

Appl. Surf. Sci. (1)

F. Chen, X.L. Wang, X.S. Li, L.L. Hu, Q.M. Lu, K.M. Wang, B.R. Shi, and D.Y. Shen, “Ion-implanted waveguides in Nd3+-doped silicate glass and Er3+/Yb3+ co-doped phosphate glass, Appl. Surf. Sci. 193, 92–101 (2002).
[CrossRef]

in Lasers and Applications, Proc. SPIE (1)

A. Castelo, D. Nieto, M.T. Flores-Arias, C. Gómez-Reino, and X. de la Fuente, “Laser backwriting process on glass via ablation of metal targets,” in Lasers and Applications, Proc. SPIE 5958, K.M. Abramski, A. Lapucci, and E.F. Plinski, eds., 600–607, (2005).

J. Opt. Commun. (1)

R. Göring and M. Rothhardt, “Application of the refracted near fied technique to multimode planar and channel waveguides in glass,” J. Opt. Commun. 7, 82–85 (1986).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (2)

S.I. Najafi, “Introduction to Glass Integrated Optics,” Artech House Inc. Massachusetts, 1992.

J. Bohandy, B.F. Kim, and F.J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys.60, 1538–1539.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental set-up for the waveguide fabrication procedure

Fig. 2.
Fig. 2.

Experimental set-up for refractive index profile determination using the RNF technique.

Fig. 3.
Fig. 3.

Measured bidimensional refractive index profile. The uniform region to the left corresponds to the glass block, while the vertical thin low n value strip corresponds to the immersion liquid.

Fig. 4.
Fig. 4.

Measured refractive index profile crossing from the liquid, into the waveguide, and into the substrate (z direction). The dotted line shows the extrapolated refractive index values of the glass block, matching liquid and substrate.

Fig. 5.
Fig. 5.

Measured refractive index profile parallel to the substrate surface, about 5mm into the waveguide (x direction).

Fig. 6.
Fig. 6.

Position of the points chosen for the EDX analysis reported in table 1.

Tables (1)

Tables Icon

Table 1. Chemical composition (given as percentages) of the zones analyzed at different distances from the substrate edge.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P ( θ ) = a 1 a 2 n ( r ) ,

Metrics