Abstract

We show that nano-mechanical interaction using atomic force microscopy (AFM) can be used to map out mode-patterns of an optical micro-resonator with high spatial accuracy. Furthermore we demonstrate how the Q-factor and center wavelength of such resonances can be sensitively modified by both horizontal and vertical displacement of an AFM tip consisting of either Si3N4 or Si material. With a silicon tip we are able to tune the resonance wavelength by 2.3 nm, and to set Q between values of 615 and zero, by expedient positioning of the AFM tip. We find full on/off switching for less than 100 nm vertical, and for 500 nm lateral displacement at the strongest resonance antinode locations.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gerace and L. C. Andreani, “Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs,” Photon. Nanostruct. 3, 120–128 (2005).
    [Crossref]
  2. R. Ferrini, D. Leuenberger, R. Houdré, H. Benisty, M. Kamp, and A. Forchel, “Disorder-induced losses in planar photonic crystals,” Opt. Lett. 31, 1426–1428 (2006).
    [Crossref] [PubMed]
  3. M. Settle, M. Salib, A. Michaeli, and T. F. Krauss, “Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography,” Opt. Express 14, 2440–2445 (2006).
    [Crossref] [PubMed]
  4. H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett. 16, 1528–1530 (2004).
    [Crossref]
  5. Y. A. Vlasov, M. O′Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
    [Crossref] [PubMed]
  6. W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
    [Crossref]
  7. R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. Drift van der, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112-1-3 (2006).
    [Crossref]
  8. S. F. Mingaleev, M. Schillinger, D. Hermann, and K. Busch, “Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration,” Opt. Lett. 29, 2858–2860 (2004).
    [Crossref]
  9. A. F. Koenderink, R. Wuest, B. C. Buchler, S. Richter, P. Strasser, M. Kafesaki, A. Rogach, R. B. Wehrspohn, C. M. Soukoulis, D. Erni, F. Robin, H. Jackel, and V. Sandoghdar, “Near-field optics and control of photonic crystals,” Photon. Nanostruct. Fundam. Appl. 3, 63–74 (2005).
    [Crossref]
  10. I. Marki, M. Salt, and H. P. Herzig, “Tuning the resonance of a photonic crystal microcavity with an AFM probe,” Opt. Express 14, 2969–2978 (2006).
    [Crossref] [PubMed]
  11. T. Takahata, K. Hoshino, K. Matsumoto, and I. Shimoyama, “Transmittance tuning of photonic crystal reflectors using an AFM cantilever,” Sens. Actuators A 128, 197–201 (2006).
    [Crossref]
  12. P. T. Rakich et al., “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Opt. Lett. 31, 1241–1243 (2006).
    [Crossref] [PubMed]
  13. S. Wonjoo, O. Solgaard, and F. Shanhui, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 33102-1-4 (2005).
  14. G. N. Nielson et al., “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–2 (2005).
    [Crossref]
  15. I. Stefanon et al., “Heterodyne detection of guided waves using a scattering-type Scanning Near-Field Optical Microscope,” Opt. Express 13, 5553–5564 (2005).
    [Crossref] [PubMed]
  16. M. Notomi et al., “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
    [Crossref] [PubMed]
  17. A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95, 153904-1-4 (2005).
    [Crossref]
  18. M. Hammer and R. Stoffer, “PSTM/NSOM modeling by 2-D quadridirectional eigenmode expansion,” J. Lightwave Technol. 23, 1956–1966 (2005).
    [Crossref]
  19. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [Crossref] [PubMed]
  20. M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133–148 (2006).
    [Crossref]
  21. W. Bogaerts et al., “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
    [Crossref]
  22. K. O. Vanderwerf et al., “Compact stand-alone atomic-force microscope,” Rev. Sci. Instrum. 64, 2892–2897 (1993).
    [Crossref]
  23. H. Gersen et al., “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94 (2005).
    [Crossref] [PubMed]

2006 (7)

R. Ferrini, D. Leuenberger, R. Houdré, H. Benisty, M. Kamp, and A. Forchel, “Disorder-induced losses in planar photonic crystals,” Opt. Lett. 31, 1426–1428 (2006).
[Crossref] [PubMed]

M. Settle, M. Salib, A. Michaeli, and T. F. Krauss, “Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography,” Opt. Express 14, 2440–2445 (2006).
[Crossref] [PubMed]

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. Drift van der, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112-1-3 (2006).
[Crossref]

I. Marki, M. Salt, and H. P. Herzig, “Tuning the resonance of a photonic crystal microcavity with an AFM probe,” Opt. Express 14, 2969–2978 (2006).
[Crossref] [PubMed]

T. Takahata, K. Hoshino, K. Matsumoto, and I. Shimoyama, “Transmittance tuning of photonic crystal reflectors using an AFM cantilever,” Sens. Actuators A 128, 197–201 (2006).
[Crossref]

P. T. Rakich et al., “Ultrawide tuning of photonic microcavities via evanescent field perturbation,” Opt. Lett. 31, 1241–1243 (2006).
[Crossref] [PubMed]

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133–148 (2006).
[Crossref]

2005 (11)

W. Bogaerts et al., “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23, 401–412 (2005).
[Crossref]

S. Wonjoo, O. Solgaard, and F. Shanhui, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 33102-1-4 (2005).

G. N. Nielson et al., “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–2 (2005).
[Crossref]

I. Stefanon et al., “Heterodyne detection of guided waves using a scattering-type Scanning Near-Field Optical Microscope,” Opt. Express 13, 5553–5564 (2005).
[Crossref] [PubMed]

M. Notomi et al., “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13, 2678–2687 (2005).
[Crossref] [PubMed]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95, 153904-1-4 (2005).
[Crossref]

M. Hammer and R. Stoffer, “PSTM/NSOM modeling by 2-D quadridirectional eigenmode expansion,” J. Lightwave Technol. 23, 1956–1966 (2005).
[Crossref]

D. Gerace and L. C. Andreani, “Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs,” Photon. Nanostruct. 3, 120–128 (2005).
[Crossref]

A. F. Koenderink, R. Wuest, B. C. Buchler, S. Richter, P. Strasser, M. Kafesaki, A. Rogach, R. B. Wehrspohn, C. M. Soukoulis, D. Erni, F. Robin, H. Jackel, and V. Sandoghdar, “Near-field optics and control of photonic crystals,” Photon. Nanostruct. Fundam. Appl. 3, 63–74 (2005).
[Crossref]

Y. A. Vlasov, M. O′Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[Crossref]

2004 (2)

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett. 16, 1528–1530 (2004).
[Crossref]

S. F. Mingaleev, M. Schillinger, D. Hermann, and K. Busch, “Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration,” Opt. Lett. 29, 2858–2860 (2004).
[Crossref]

2003 (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

1993 (1)

K. O. Vanderwerf et al., “Compact stand-alone atomic-force microscope,” Rev. Sci. Instrum. 64, 2892–2897 (1993).
[Crossref]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Andreani, L. C.

D. Gerace and L. C. Andreani, “Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs,” Photon. Nanostruct. 3, 120–128 (2005).
[Crossref]

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Bassi, P.

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133–148 (2006).
[Crossref]

Bastiaansen, C. W. M.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. Drift van der, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112-1-3 (2006).
[Crossref]

Bellanca, G.

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133–148 (2006).
[Crossref]

Benisty, H.

Bogaerts, W.

Broer, D. J.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. Drift van der, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112-1-3 (2006).
[Crossref]

Buchler, B. C.

A. F. Koenderink, R. Wuest, B. C. Buchler, S. Richter, P. Strasser, M. Kafesaki, A. Rogach, R. B. Wehrspohn, C. M. Soukoulis, D. Erni, F. Robin, H. Jackel, and V. Sandoghdar, “Near-field optics and control of photonic crystals,” Photon. Nanostruct. Fundam. Appl. 3, 63–74 (2005).
[Crossref]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95, 153904-1-4 (2005).
[Crossref]

Busch, K.

Carlström, C. F.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. Drift van der, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112-1-3 (2006).
[Crossref]

Chong, H.

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133–148 (2006).
[Crossref]

Chong, H. M. H.

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett. 16, 1528–1530 (2004).
[Crossref]

De La Rue, R.

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133–148 (2006).
[Crossref]

De La Rue, R. M.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[Crossref]

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett. 16, 1528–1530 (2004).
[Crossref]

de Ridder, R. M.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[Crossref]

Driessen, A.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[Crossref]

Drift van der, E.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. Drift van der, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112-1-3 (2006).
[Crossref]

Erni, D.

A. F. Koenderink, R. Wuest, B. C. Buchler, S. Richter, P. Strasser, M. Kafesaki, A. Rogach, R. B. Wehrspohn, C. M. Soukoulis, D. Erni, F. Robin, H. Jackel, and V. Sandoghdar, “Near-field optics and control of photonic crystals,” Photon. Nanostruct. Fundam. Appl. 3, 63–74 (2005).
[Crossref]

Ferrini, R.

Forchel, A.

Gerace, D.

D. Gerace and L. C. Andreani, “Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs,” Photon. Nanostruct. 3, 120–128 (2005).
[Crossref]

Gersen, H.

H. Gersen et al., “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94 (2005).
[Crossref] [PubMed]

Gnan, M.

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133–148 (2006).
[Crossref]

Hamann, H. F.

Y. A. Vlasov, M. O′Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Hammer, M.

Hermann, D.

Herzig, H. P.

Hoekstra, H. J. W. M.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[Crossref]

Hopman, W. C. L.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[Crossref]

Hoshino, K.

T. Takahata, K. Hoshino, K. Matsumoto, and I. Shimoyama, “Transmittance tuning of photonic crystal reflectors using an AFM cantilever,” Sens. Actuators A 128, 197–201 (2006).
[Crossref]

Houdré, R.

Jackel, H.

A. F. Koenderink, R. Wuest, B. C. Buchler, S. Richter, P. Strasser, M. Kafesaki, A. Rogach, R. B. Wehrspohn, C. M. Soukoulis, D. Erni, F. Robin, H. Jackel, and V. Sandoghdar, “Near-field optics and control of photonic crystals,” Photon. Nanostruct. Fundam. Appl. 3, 63–74 (2005).
[Crossref]

Kafesaki, M.

A. F. Koenderink, R. Wuest, B. C. Buchler, S. Richter, P. Strasser, M. Kafesaki, A. Rogach, R. B. Wehrspohn, C. M. Soukoulis, D. Erni, F. Robin, H. Jackel, and V. Sandoghdar, “Near-field optics and control of photonic crystals,” Photon. Nanostruct. Fundam. Appl. 3, 63–74 (2005).
[Crossref]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95, 153904-1-4 (2005).
[Crossref]

Kamp, M.

Karouta, F.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. Drift van der, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112-1-3 (2006).
[Crossref]

Kjellander, B. K. C.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. Drift van der, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112-1-3 (2006).
[Crossref]

Koenderink, A. F.

A. F. Koenderink, R. Wuest, B. C. Buchler, S. Richter, P. Strasser, M. Kafesaki, A. Rogach, R. B. Wehrspohn, C. M. Soukoulis, D. Erni, F. Robin, H. Jackel, and V. Sandoghdar, “Near-field optics and control of photonic crystals,” Photon. Nanostruct. Fundam. Appl. 3, 63–74 (2005).
[Crossref]

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95, 153904-1-4 (2005).
[Crossref]

Krauss, T. F.

Lambeck, P. V.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[Crossref]

Leuenberger, D.

Marki, I.

Matsumoto, K.

T. Takahata, K. Hoshino, K. Matsumoto, and I. Shimoyama, “Transmittance tuning of photonic crystal reflectors using an AFM cantilever,” Sens. Actuators A 128, 197–201 (2006).
[Crossref]

McNab, S. J.

Y. A. Vlasov, M. O′Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Michaeli, A.

Mingaleev, S. F.

Nielson, G. N.

G. N. Nielson et al., “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–2 (2005).
[Crossref]

Noda, S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Notomi, M.

Nötzel, R.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. Drift van der, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112-1-3 (2006).
[Crossref]

O'Boyle, M.

Y. A. Vlasov, M. O′Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Pottier, P.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[Crossref]

Rakich, P. T.

Richter, S.

A. F. Koenderink, R. Wuest, B. C. Buchler, S. Richter, P. Strasser, M. Kafesaki, A. Rogach, R. B. Wehrspohn, C. M. Soukoulis, D. Erni, F. Robin, H. Jackel, and V. Sandoghdar, “Near-field optics and control of photonic crystals,” Photon. Nanostruct. Fundam. Appl. 3, 63–74 (2005).
[Crossref]

Robin, F.

A. F. Koenderink, R. Wuest, B. C. Buchler, S. Richter, P. Strasser, M. Kafesaki, A. Rogach, R. B. Wehrspohn, C. M. Soukoulis, D. Erni, F. Robin, H. Jackel, and V. Sandoghdar, “Near-field optics and control of photonic crystals,” Photon. Nanostruct. Fundam. Appl. 3, 63–74 (2005).
[Crossref]

Rogach, A.

A. F. Koenderink, R. Wuest, B. C. Buchler, S. Richter, P. Strasser, M. Kafesaki, A. Rogach, R. B. Wehrspohn, C. M. Soukoulis, D. Erni, F. Robin, H. Jackel, and V. Sandoghdar, “Near-field optics and control of photonic crystals,” Photon. Nanostruct. Fundam. Appl. 3, 63–74 (2005).
[Crossref]

Salemink, H. W. M.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. Drift van der, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112-1-3 (2006).
[Crossref]

Salib, M.

Salt, M.

Sandoghdar, V.

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95, 153904-1-4 (2005).
[Crossref]

A. F. Koenderink, R. Wuest, B. C. Buchler, S. Richter, P. Strasser, M. Kafesaki, A. Rogach, R. B. Wehrspohn, C. M. Soukoulis, D. Erni, F. Robin, H. Jackel, and V. Sandoghdar, “Near-field optics and control of photonic crystals,” Photon. Nanostruct. Fundam. Appl. 3, 63–74 (2005).
[Crossref]

Schillinger, M.

Settle, M.

Shanhui, F.

S. Wonjoo, O. Solgaard, and F. Shanhui, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 33102-1-4 (2005).

Shimoyama, I.

T. Takahata, K. Hoshino, K. Matsumoto, and I. Shimoyama, “Transmittance tuning of photonic crystal reflectors using an AFM cantilever,” Sens. Actuators A 128, 197–201 (2006).
[Crossref]

Snijders, J. A. P.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. Drift van der, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112-1-3 (2006).
[Crossref]

Solgaard, O.

S. Wonjoo, O. Solgaard, and F. Shanhui, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 33102-1-4 (2005).

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Soukoulis, C. M.

A. F. Koenderink, R. Wuest, B. C. Buchler, S. Richter, P. Strasser, M. Kafesaki, A. Rogach, R. B. Wehrspohn, C. M. Soukoulis, D. Erni, F. Robin, H. Jackel, and V. Sandoghdar, “Near-field optics and control of photonic crystals,” Photon. Nanostruct. Fundam. Appl. 3, 63–74 (2005).
[Crossref]

Stefanon, I.

Stoffer, R.

Strasser, P.

A. F. Koenderink, R. Wuest, B. C. Buchler, S. Richter, P. Strasser, M. Kafesaki, A. Rogach, R. B. Wehrspohn, C. M. Soukoulis, D. Erni, F. Robin, H. Jackel, and V. Sandoghdar, “Near-field optics and control of photonic crystals,” Photon. Nanostruct. Fundam. Appl. 3, 63–74 (2005).
[Crossref]

Takahata, T.

T. Takahata, K. Hoshino, K. Matsumoto, and I. Shimoyama, “Transmittance tuning of photonic crystal reflectors using an AFM cantilever,” Sens. Actuators A 128, 197–201 (2006).
[Crossref]

van der Heijden, R.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. Drift van der, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112-1-3 (2006).
[Crossref]

van der Heijden, R. W.

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. Drift van der, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112-1-3 (2006).
[Crossref]

van Lith, J.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[Crossref]

Vanderwerf, K. O.

K. O. Vanderwerf et al., “Compact stand-alone atomic-force microscope,” Rev. Sci. Instrum. 64, 2892–2897 (1993).
[Crossref]

Vlasov, Y. A.

Y. A. Vlasov, M. O′Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Wehrspohn, R. B.

A. F. Koenderink, R. Wuest, B. C. Buchler, S. Richter, P. Strasser, M. Kafesaki, A. Rogach, R. B. Wehrspohn, C. M. Soukoulis, D. Erni, F. Robin, H. Jackel, and V. Sandoghdar, “Near-field optics and control of photonic crystals,” Photon. Nanostruct. Fundam. Appl. 3, 63–74 (2005).
[Crossref]

Wonjoo, S.

S. Wonjoo, O. Solgaard, and F. Shanhui, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 33102-1-4 (2005).

Wuest, R.

A. F. Koenderink, R. Wuest, B. C. Buchler, S. Richter, P. Strasser, M. Kafesaki, A. Rogach, R. B. Wehrspohn, C. M. Soukoulis, D. Erni, F. Robin, H. Jackel, and V. Sandoghdar, “Near-field optics and control of photonic crystals,” Photon. Nanostruct. Fundam. Appl. 3, 63–74 (2005).
[Crossref]

Yudistira, D.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[Crossref]

Appl. Phys. Lett. (1)

R. van der Heijden, C. F. Carlström, J. A. P. Snijders, R. W. van der Heijden, F. Karouta, R. Nötzel, H. W. M. Salemink, B. K. C. Kjellander, C. W. M. Bastiaansen, D. J. Broer, and E. Drift van der, “InP-based two-dimensional photonic crystals filled with polymers,” Appl. Phys. Lett. 88, 161112-1-3 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. C. L. Hopman, P. Pottier, D. Yudistira, J. van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (2)

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett. 16, 1528–1530 (2004).
[Crossref]

G. N. Nielson et al., “Integrated wavelength-selective optical MEMS switching using ring resonator filters,” IEEE Photon. Technol. Lett. 17, 1190–2 (2005).
[Crossref]

J. Appl. Phys. (1)

S. Wonjoo, O. Solgaard, and F. Shanhui, “Displacement sensing using evanescent tunneling between guided resonances in photonic crystal slabs,” J. Appl. Phys. 98, 33102-1-4 (2005).

J. Lightwave Technol. (2)

Nature (2)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[Crossref] [PubMed]

Y. A. Vlasov, M. O′Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438, 65–69 (2005).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

M. Gnan, G. Bellanca, H. Chong, P. Bassi, and R. De La Rue, “Modelling of photonic wire Bragg gratings,” Opt. Quantum Electron. 38, 133–148 (2006).
[Crossref]

Photon. Nanostruct. (1)

D. Gerace and L. C. Andreani, “Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs,” Photon. Nanostruct. 3, 120–128 (2005).
[Crossref]

Photon. Nanostruct. Fundam. Appl. (1)

A. F. Koenderink, R. Wuest, B. C. Buchler, S. Richter, P. Strasser, M. Kafesaki, A. Rogach, R. B. Wehrspohn, C. M. Soukoulis, D. Erni, F. Robin, H. Jackel, and V. Sandoghdar, “Near-field optics and control of photonic crystals,” Photon. Nanostruct. Fundam. Appl. 3, 63–74 (2005).
[Crossref]

Phys. Rev. Lett. (1)

A. F. Koenderink, M. Kafesaki, B. C. Buchler, and V. Sandoghdar, “Controlling the resonance of a photonic crystal microcavity by a near-field probe,” Phys. Rev. Lett. 95, 153904-1-4 (2005).
[Crossref]

Rev. Sci. Instrum. (1)

K. O. Vanderwerf et al., “Compact stand-alone atomic-force microscope,” Rev. Sci. Instrum. 64, 2892–2897 (1993).
[Crossref]

Sens. Actuators A (1)

T. Takahata, K. Hoshino, K. Matsumoto, and I. Shimoyama, “Transmittance tuning of photonic crystal reflectors using an AFM cantilever,” Sens. Actuators A 128, 197–201 (2006).
[Crossref]

Other (1)

H. Gersen et al., “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94 (2005).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Photonic crystal micro-cavity. (a) Computed optical field intensity of the resonant mode pattern. The arrow indicates the launching direction of light exciting the resonator. (b) SEM image of the micro-cavity. The period and hole radius are denoted with α and r respectively.

Fig. 2.
Fig. 2.

Setup and optical field mapping using AFM. (a) Schematic drawing of the setup. (b) Geometry of the photonic crystal micro-cavity+input waveguide as obtained by conventional AFM probing in a raster scan. (c) Transmitted optical power recorded for each (grid) position of the scanning AFM tip. (d) Enhanced AFM image overlaying the optical detector data resulting in a precise map of the locations of maximum probe-field interaction, corresponding to amplitude peaks of the resonance pattern within the cavity.

Fig. 3.
Fig. 3.

Quasi 3-D representations of the position dependent probe effect on the transmission. Figs. 3(a)-3(c): Si3N4 probe in contact mode at different wavelengths λs ; Figs. 3(d)-3(f): Si tip in tapping mode with different tapping amplitudes resulting in different average probe heights (h). (a) At resonance (λs =1539.25 nm ~λr,0 ), showing lower transmission (dark regions) near antinodes of the optical field. (b) λs slightly larger than λr,0 . (c) λsr,0 , showing the inverse pattern of Fig. 3(a). (d) Si tip, tapping mode, large average height has small optical effect. (e), (f) Smaller average heights give larger optical effects.

Fig. 4.
Fig. 4.

Nano-mechanical interaction. (a) Transmission spectra for the situation without probe, and with a Si probe positioned at the antinode labeled A, and at a location B close to A, as indicated in the inset. (b) Transmission versus Si tip displacement in the z and y direction [see the dotted “scan line” in the inset of Fig. 4(a)], λsr,0 .

Fig. 5.
Fig. 5.

Nano-mechanical tuning. (a) Change of Q and resonance wavelength detuning for a Si3N4 probe versus y-displacement along the scan line shown in Fig. 4(a). (b) The same but now for a Si tip. In close proximity to the field maximum no data could be obtained because the transmission had dropped below the noise level.

Metrics