Abstract

Full-field optical coherence microscopy (FFOCM) utilizes coherence gating to obtain high-resolution optical sections in thick tissues. FFOCM is an attractive technology for endoscopic microscopy at the cellular level since it does not require a high NA objective lens or beam scanning and is therefore particularly amenable to miniaturization. In this manuscript, we present a novel scheme for conducting FFOCM that utilizes spectrally modulated, spatially incoherent illumination and a static Linnik interferometer. This approach is advantageous for endoscopic microscopy since it allows FFOCM to be conducted through a single multimode fiber optic imaging bundle and does not require moving parts in the endoscope probe. Images acquired from biological samples in free space demonstrate that this new method provides the same detailed microscopic structure as that of conventional FFOCM. High-resolution images were also obtained through a multimode fiber bundle, further supporting the potential of this method for endoscopic microscopy.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Rajadhyaksha, R. R. Anderson, and R. H. Webb, "Video-rate confocal scanning laser microscope for imaging human tissue in vivo," Appl. Opt. 38, 2105-2115 (1999).
    [CrossRef]
  2. C. J. Koester, J. D. Auran, H. D. Rosskothen, G. J. Florakis, and R. B. Tackaberry, "Clinical microscopy of the cornea utilizing optical sectioning and high-numerical-aperture objective," J. Opt. Soc. Am. A 10, 1670-1679 (1993).
    [CrossRef] [PubMed]
  3. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  4. B. E. Bouma and G. J. Tearney, Handbook of optical coherence tomography (Marcel Dekker, New York, 2002).
  5. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, "Full-field optical coherence microscopy," Opt. Lett. 23, 244-246 (1998).
    [CrossRef]
  6. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, "High-resolution full-field optical coherence tomography with a Linnik microscope," Appl. Opt. 41, 805-812 (2002).
    [CrossRef] [PubMed]
  7. L. Vabre, A. Dubois, and A. C. Boccara, "Thermal-light full-field optical coherence tomography," Opt. Lett. 27, 530-532 (2002).
    [CrossRef]
  8. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, "Ultrahigh-resolution full-field optical coherence tomography," Appl. Opt. 43, 2874-2883 (2004).
    [CrossRef] [PubMed]
  9. A. Dubois, G. Moneron, K. Grieve, A. C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomographt," Phys. Med. Biol. 49, 1227-1234 (2004).
    [CrossRef] [PubMed]
  10. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, "Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera," Opt. Express 14, 726-735 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-726
    [CrossRef] [PubMed]
  11. S. M. Bentzen, "Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function," Med. Phy. 10, 579-581 (1983).
    [CrossRef]
  12. D. J. Hall, J. C. Hebden, and D. T. Delpy, "Evaluation of spatial resolution as a function of thickness for time-resolved optical imaging of highly scattering media," Med. Phys. 24, 361-368 (1997).
    [CrossRef] [PubMed]
  13. http://www.mathworks.com/access/helpdesk/help/toolbox/images/fspecial.html
  14. G. S. Kino and S. S. C. Chim, "Mirau correlation microscope," Appl. Opt. 29, 3775-3783 (1990).
    [CrossRef] [PubMed]
  15. A. F. Gmitro and D. Aziz, "Confocal microscopy through a fiber-optic imaging bundle," Opt. Lett. 18, 565-567 (1993).
    [CrossRef] [PubMed]
  16. P. M. Lane, A. L. P. Dlugan, R. Richards-Kortum, and C. E. MacAulay, "Fiber-optic confocal microscopy using a spatial light modulator," Opt. Lett. 25, 1780-1782 (2000).
    [CrossRef]

2006 (1)

2004 (2)

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, "Ultrahigh-resolution full-field optical coherence tomography," Appl. Opt. 43, 2874-2883 (2004).
[CrossRef] [PubMed]

A. Dubois, G. Moneron, K. Grieve, A. C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomographt," Phys. Med. Biol. 49, 1227-1234 (2004).
[CrossRef] [PubMed]

2002 (2)

2000 (1)

1999 (1)

1998 (1)

1997 (2)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

D. J. Hall, J. C. Hebden, and D. T. Delpy, "Evaluation of spatial resolution as a function of thickness for time-resolved optical imaging of highly scattering media," Med. Phys. 24, 361-368 (1997).
[CrossRef] [PubMed]

1993 (2)

1990 (1)

1983 (1)

S. M. Bentzen, "Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function," Med. Phy. 10, 579-581 (1983).
[CrossRef]

Anderson, R. R.

Auran, J. D.

Aziz, D.

Beaurepaire, E.

Bentzen, S. M.

S. M. Bentzen, "Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function," Med. Phy. 10, 579-581 (1983).
[CrossRef]

Blanchot, L.

Boccara, A. C.

Boccara, C.

Boppart, S. A.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Bouma, B. E.

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, "Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera," Opt. Express 14, 726-735 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-726
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Brezinski, M. E.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Chim, S. S. C.

Delpy, D. T.

D. J. Hall, J. C. Hebden, and D. T. Delpy, "Evaluation of spatial resolution as a function of thickness for time-resolved optical imaging of highly scattering media," Med. Phys. 24, 361-368 (1997).
[CrossRef] [PubMed]

Dlugan, A. L. P.

Dubois, A.

Florakis, G. J.

Fujimoto, J. G.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Gmitro, A. F.

Grieve, K.

A. Dubois, G. Moneron, K. Grieve, A. C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomographt," Phys. Med. Biol. 49, 1227-1234 (2004).
[CrossRef] [PubMed]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, "Ultrahigh-resolution full-field optical coherence tomography," Appl. Opt. 43, 2874-2883 (2004).
[CrossRef] [PubMed]

Hall, D. J.

D. J. Hall, J. C. Hebden, and D. T. Delpy, "Evaluation of spatial resolution as a function of thickness for time-resolved optical imaging of highly scattering media," Med. Phys. 24, 361-368 (1997).
[CrossRef] [PubMed]

Hebden, J. C.

D. J. Hall, J. C. Hebden, and D. T. Delpy, "Evaluation of spatial resolution as a function of thickness for time-resolved optical imaging of highly scattering media," Med. Phys. 24, 361-368 (1997).
[CrossRef] [PubMed]

Iftimia, N.

Kino, G. S.

Koester, C. J.

Lane, P. M.

Lebec, M.

Lecaque, R.

MacAulay, C. E.

Moneron, G.

A. Dubois, G. Moneron, K. Grieve, A. C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomographt," Phys. Med. Biol. 49, 1227-1234 (2004).
[CrossRef] [PubMed]

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, "Ultrahigh-resolution full-field optical coherence tomography," Appl. Opt. 43, 2874-2883 (2004).
[CrossRef] [PubMed]

Oh, W. Y.

Pitris, C.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Rajadhyaksha, M.

Richards-Kortum, R.

Rosskothen, H. D.

Saint-Jalmes, H.

Southern, J. F.

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Tackaberry, R. B.

Tearney, G. J.

W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, "Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera," Opt. Express 14, 726-735 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-2-726
[CrossRef] [PubMed]

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Vabre, L.

Webb, R. H.

Yelin, R.

Yun, S. H.

Appl. Opt. (4)

J. Opt. Soc. Am. A (1)

Med. Phy. (1)

S. M. Bentzen, "Evaluation of the spatial resolution of a CT scanner by direct analysis of the edge response function," Med. Phy. 10, 579-581 (1983).
[CrossRef]

Med. Phys. (1)

D. J. Hall, J. C. Hebden, and D. T. Delpy, "Evaluation of spatial resolution as a function of thickness for time-resolved optical imaging of highly scattering media," Med. Phys. 24, 361-368 (1997).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Med. Biol. (1)

A. Dubois, G. Moneron, K. Grieve, A. C. Boccara, "Three-dimensional cellular-level imaging using full-field optical coherence tomographt," Phys. Med. Biol. 49, 1227-1234 (2004).
[CrossRef] [PubMed]

Science (1)

G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A. Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Other (2)

B. E. Bouma and G. J. Tearney, Handbook of optical coherence tomography (Marcel Dekker, New York, 2002).

http://www.mathworks.com/access/helpdesk/help/toolbox/images/fspecial.html

Supplementary Material (8)

» Media 1: AVI (14876 KB)     
» Media 2: AVI (2454 KB)     
» Media 3: AVI (14493 KB)     
» Media 4: AVI (2465 KB)     
» Media 5: AVI (10549 KB)     
» Media 6: AVI (1827 KB)     
» Media 7: AVI (4073 KB)     
» Media 8: AVI (1830 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the experimental setup. Xe, xenon arc lamp; ND, neutral density filter; GP, glass plate; MMF, multi-mode fiber; DAQ, data acquisition board in computer.

Fig. 2.
Fig. 2.

Images of head mesenchymal cells of a fixed Xenopus laevis embryo. (a) Movie of a series of en face images from ventral side (top) to dorsal side (bottom) (presented at 30 fps, smaller version: 2.5 MB, larger version: 15 MB). (b) Cross-sectional image acquired from 700 en face FFOCM images. Scale bar: 100 µm.

Fig. 3.
Fig. 3.

Images of Xenopus laevis embryo heart, ex vivo. (a) Movie of a series of en face images (ventral to dorsal) (presented at 30 fps, smaller version: 2.5 MB, larger version: 15 MB). (b) Movie of a series of reconstructed cross-sectional images (anterior to posterior) (presented at 30 fps, smaller version: 1.8 MB, larger version: 11 MB). PS: pericardial sac, V: ventricle, TA: truncus arteriosus, A: atrium. Scale bar: 100 µm.

Fig. 4.
Fig. 4.

(a) FFOCM images of 1951 USAF resolution target acquired through fiber optic bundle. (b) Image of Fig. 4a smoothed to reduce pixilation artifacts. Scale bar: 100 µm.

Fig. 5.
Fig. 5.

Images of Xenopus laevis embryo heart, ex vivo, obtained through a multimode fiber optic imaging bundle. (a) Movie of a series of en face images (ventral to dorsal) (presented at 15 fps, smaller version: 1.8 MB, larger version: 4.1 MB). (b) Reconstructed cross-sectional images. PS: pericardial sac, V: ventricle, TA: truncus arteriosus.. Scale bar: 100 µm.

Fig. 6.
Fig. 6.

Designs for endoscopic FFOCM probe optics. (a) Michelson interferometer with a beam splitter between the objective lens and sample. (b) Mirau interferometer.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y , t ) = 1 2 ( 2 π κ 2 ) 1 2 e 2 ( k k 0 κ ) 2 { 1 + cos [ 2 k ( L + δ l sin ( 2 π ft + θ ) ) ] }
× { I 0 ( x , y ) + A ( x , y ) cos [ 2 kz + ϕ ( x , y ) ] } dk ,
0 T 2 dt I ( x , y , t ) T 2 T dt I ( x , y , t )
= 1 4 0 T 2 dt { 2 I 0 ( x , y ) e κ 2 [ L + δ l sin ( 2 π ft + θ ) ] 2 2 cos [ 2 k 0 ( L + δ l sin ( 2 π ft + θ ) ) ] }
+ A ( x , y ) e κ 2 [ z + L + δ l sin ( 2 π ft + θ ) ] 2 2 cos [ 2 k 0 ( z + L + δ l sin ( 2 π ft + θ ) ) + φ ( x , y ) ]
+ A ( x , y ) e κ 2 [ z L δ l sin ( 2 π ft + θ ) ] 2 2 cos [ 2 k 0 ( z L δ l sin ( 2 π ft + θ ) ) + φ ( x , y ) ] }
1 4 T 2 T dt { …… }
1 4 A ( x , y ) { 0 T 2 dt cos [ 2 k 0 δ l sin ( 2 π ft + θ ) + φ ( x , y ) ]
T 2 T dt cos [ 2 k 0 δ l sin ( 2 π ft + θ ) + φ ( x , y ) ] } ,
0 T 2 dt I ( x , y , t ) T 2 T dt I ( x , y , t ) 2
= ( T π ) 2 A ( x , y ) 2 sin 2 ϕ ( x , y ) n = 0 J 2 n + 1 ( 2 k 0 δ l ) 2 n + 1 cos [ ( 2 n + 1 ) ] θ 2
= ( T π ) 2 A 2 Γ 2 sin 2 ϕ
SNR = 8 ( Γ max π ) 2 N R s R r ( R r + R inc ) 2 ξ max 2 ξ max + η 2 ,
S [ dB ] = 10 × log [ ( π 2 Γ max ) 2 ( R r + R inc ) 2 N R r ξ max ( 1 + η 2 ξ max ) ] .

Metrics