Abstract

The kinetic process of Cu+ UV laser in Ne-CuBr longitudinal pulsed discharge is analyzed and a comprehensive self-consistent physical model is developed. The temporal evolutions of discharge parameters, main particle densities, the electron temperature, and the laser pulse intensity are numerically calculated. The model results illustrate the process of population inversion and the lasing mechanism. The calculations on the influences of the tube radius and Br atoms on the laser output characteristic well explain the experimental results.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. McNeil, G. J. Collins, K. B. Persson, and D. L. Franzen, “Ultraviolet laser action from Cu II in the 2500-A region,” Appl. Phys. Lett. 28, 207–209 (1976).
    [Crossref]
  2. K. G. Hernqvist, “Continuous laser oscillation at 2703 A in copper ion,” IEEE J. Quantum Electron. 13, 929–934 (1977).
    [Crossref]
  3. R. Solanki, W. M. Fairbank, and G. J. Collins, “Multiwatt operation of Cu II and Ag II hollow cathode lasers,” IEEE J. Quantum Electron. 16, 1292–1294 (1980).
    [Crossref]
  4. B. Auschwitz, H. J. Eichler, and W. Wittwer, “Extension of the operating period of an UV Cu II laser by admixture of argon,” Appl. Phys. Lett. 36, 804–805 (1980).
    [Crossref]
  5. K. Jain, “New UV and IR transitions in gold, copper, and cadmium hollow cathode lasers,” IEEE J. Quantum Electron. 16, 387–388 (1980).
    [Crossref]
  6. Z. Donko, L. Szalai, K. Rozsa, M. Ulbel, and M. Pockl, “High-gain ultraviolet Cu-II laser in a segmented hollow cathode discharge,” IEEE J. Quantum Electron. 34, 47–52 (1998).
    [Crossref]
  7. N. K. Vuchkov, K. A. Temelkov, and N. V. Sabotinov, “UV lasing on Cu in Ne-CuBr pulse longitudinal discharge,” IEEE J. Quantum Electron. 35, 1799–1804 (1999).
    [Crossref]
  8. C. E. Little and N. V. Sabotinov, Pulsed Metal Vapor Lasers, 113–124 (C. E. Little and N. V. Sabotinov, Kluwer, Netherlands, 1996).
  9. N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Influence of the Active Zone Diameter on the UV-Ion Ne-CuBr Laser Performance,” IEEE J. Quantum Electron. 37, 1538–1546 (2001).
    [Crossref]
  10. N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Kinetic and experimental study on the influence of the inside tube diameter on the UV ion Ne-CuBr laser output parameters,” in International Conference on Atomic and Molecular Pulsed Lasers IV, V. F. Tarasenko, G. V. Mayer, and G. G. Petrash, eds., Proc. SPIE4747, 156–163 (2002).
  11. N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Output parameters and a spectral study of UV Cu+ Ne-CuBr laser,” Opt. & Laser Technology 36, 19–25 (2004).
    [Crossref]
  12. N. K. Vuchkov, K. A. Temelkov, and N. V. Sabotinov, “Effect of hydrogen on the average output power of the UV Cu+ Ne-CuBr laser,” IEEE J. Quantum Electron. 41, 62–65 (2005).
    [Crossref]
  13. M. J. Kushner, “A self-consistent model for high-repetition rate copper vapor laser,” IEEE J. Quantum Electron. 17, 1761–1764 (1981).
    [Crossref]
  14. R.J. Carman, “A self-consistent model for a longitudinal discharge excited He-Sr recombination laser,” IEEE J. Quantum Electron. 26, 1588–1607 (1990).
    [Crossref]
  15. R. J. Carman, J. W. Brown, and J. A. Piper, “A self-consistent model for the discharge kinetics in a high-repetition-rate copper-vapor laser,” IEEE J. Quantum Electron. 30, 1876–1894 (1994).
    [Crossref]
  16. Jin Y, Pan B L, Chen G, Chen K, and Yao Z X, “Numerical study on the terminating mechanisms of copper vapor laser pulse,” Acta Phys. Sin. (in Chinese) 53, 1799–1803 (2004).
  17. Bai-Liang Pan, Gang Chen, Xing Chen, and Zhi-Xin Yao, “Numerical and experimental investigation on self-terminating and recombination lasers in univalent ions of calcium and strontium,” J. Appl. Phys. 96, 34–39 (2004).
    [Crossref]
  18. R. J. Carman, R. P. Mildren, M. J. Withford, Daniel J. W. Brown, and J. A. Piper, “Modeling the Plasma Kinetics in a Kinetically Enhanced Copper Vapor Laser Utilizing HCl + H2 Admixtures,” IEEE J. Quantum Electron. 36, 438–449 (2000).
    [Crossref]
  19. Chen Gang, Pan Bai-liang, Chen Kun, and Yao Zhi-xin, “A novel excitation circuit used for CuBr lasers,” J. Optoelectronics Laser (in Chinese) 14, 1142–1145 (2003).
  20. T. Holstein, “Imprisonment of radiation in gases II,” Phys. Rev. 83, 1159–1168 (1951).
    [Crossref]

2005 (1)

N. K. Vuchkov, K. A. Temelkov, and N. V. Sabotinov, “Effect of hydrogen on the average output power of the UV Cu+ Ne-CuBr laser,” IEEE J. Quantum Electron. 41, 62–65 (2005).
[Crossref]

2004 (3)

Jin Y, Pan B L, Chen G, Chen K, and Yao Z X, “Numerical study on the terminating mechanisms of copper vapor laser pulse,” Acta Phys. Sin. (in Chinese) 53, 1799–1803 (2004).

Bai-Liang Pan, Gang Chen, Xing Chen, and Zhi-Xin Yao, “Numerical and experimental investigation on self-terminating and recombination lasers in univalent ions of calcium and strontium,” J. Appl. Phys. 96, 34–39 (2004).
[Crossref]

N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Output parameters and a spectral study of UV Cu+ Ne-CuBr laser,” Opt. & Laser Technology 36, 19–25 (2004).
[Crossref]

2003 (1)

Chen Gang, Pan Bai-liang, Chen Kun, and Yao Zhi-xin, “A novel excitation circuit used for CuBr lasers,” J. Optoelectronics Laser (in Chinese) 14, 1142–1145 (2003).

2001 (1)

N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Influence of the Active Zone Diameter on the UV-Ion Ne-CuBr Laser Performance,” IEEE J. Quantum Electron. 37, 1538–1546 (2001).
[Crossref]

2000 (1)

R. J. Carman, R. P. Mildren, M. J. Withford, Daniel J. W. Brown, and J. A. Piper, “Modeling the Plasma Kinetics in a Kinetically Enhanced Copper Vapor Laser Utilizing HCl + H2 Admixtures,” IEEE J. Quantum Electron. 36, 438–449 (2000).
[Crossref]

1999 (1)

N. K. Vuchkov, K. A. Temelkov, and N. V. Sabotinov, “UV lasing on Cu in Ne-CuBr pulse longitudinal discharge,” IEEE J. Quantum Electron. 35, 1799–1804 (1999).
[Crossref]

1998 (1)

Z. Donko, L. Szalai, K. Rozsa, M. Ulbel, and M. Pockl, “High-gain ultraviolet Cu-II laser in a segmented hollow cathode discharge,” IEEE J. Quantum Electron. 34, 47–52 (1998).
[Crossref]

1994 (1)

R. J. Carman, J. W. Brown, and J. A. Piper, “A self-consistent model for the discharge kinetics in a high-repetition-rate copper-vapor laser,” IEEE J. Quantum Electron. 30, 1876–1894 (1994).
[Crossref]

1990 (1)

R.J. Carman, “A self-consistent model for a longitudinal discharge excited He-Sr recombination laser,” IEEE J. Quantum Electron. 26, 1588–1607 (1990).
[Crossref]

1981 (1)

M. J. Kushner, “A self-consistent model for high-repetition rate copper vapor laser,” IEEE J. Quantum Electron. 17, 1761–1764 (1981).
[Crossref]

1980 (3)

R. Solanki, W. M. Fairbank, and G. J. Collins, “Multiwatt operation of Cu II and Ag II hollow cathode lasers,” IEEE J. Quantum Electron. 16, 1292–1294 (1980).
[Crossref]

B. Auschwitz, H. J. Eichler, and W. Wittwer, “Extension of the operating period of an UV Cu II laser by admixture of argon,” Appl. Phys. Lett. 36, 804–805 (1980).
[Crossref]

K. Jain, “New UV and IR transitions in gold, copper, and cadmium hollow cathode lasers,” IEEE J. Quantum Electron. 16, 387–388 (1980).
[Crossref]

1977 (1)

K. G. Hernqvist, “Continuous laser oscillation at 2703 A in copper ion,” IEEE J. Quantum Electron. 13, 929–934 (1977).
[Crossref]

1976 (1)

J. R. McNeil, G. J. Collins, K. B. Persson, and D. L. Franzen, “Ultraviolet laser action from Cu II in the 2500-A region,” Appl. Phys. Lett. 28, 207–209 (1976).
[Crossref]

1951 (1)

T. Holstein, “Imprisonment of radiation in gases II,” Phys. Rev. 83, 1159–1168 (1951).
[Crossref]

Auschwitz, B.

B. Auschwitz, H. J. Eichler, and W. Wittwer, “Extension of the operating period of an UV Cu II laser by admixture of argon,” Appl. Phys. Lett. 36, 804–805 (1980).
[Crossref]

B L, Pan

Jin Y, Pan B L, Chen G, Chen K, and Yao Z X, “Numerical study on the terminating mechanisms of copper vapor laser pulse,” Acta Phys. Sin. (in Chinese) 53, 1799–1803 (2004).

Bai-liang, Pan

Chen Gang, Pan Bai-liang, Chen Kun, and Yao Zhi-xin, “A novel excitation circuit used for CuBr lasers,” J. Optoelectronics Laser (in Chinese) 14, 1142–1145 (2003).

Brown, Daniel J. W.

R. J. Carman, R. P. Mildren, M. J. Withford, Daniel J. W. Brown, and J. A. Piper, “Modeling the Plasma Kinetics in a Kinetically Enhanced Copper Vapor Laser Utilizing HCl + H2 Admixtures,” IEEE J. Quantum Electron. 36, 438–449 (2000).
[Crossref]

Brown, J. W.

R. J. Carman, J. W. Brown, and J. A. Piper, “A self-consistent model for the discharge kinetics in a high-repetition-rate copper-vapor laser,” IEEE J. Quantum Electron. 30, 1876–1894 (1994).
[Crossref]

Carman, R. J.

R. J. Carman, R. P. Mildren, M. J. Withford, Daniel J. W. Brown, and J. A. Piper, “Modeling the Plasma Kinetics in a Kinetically Enhanced Copper Vapor Laser Utilizing HCl + H2 Admixtures,” IEEE J. Quantum Electron. 36, 438–449 (2000).
[Crossref]

R. J. Carman, J. W. Brown, and J. A. Piper, “A self-consistent model for the discharge kinetics in a high-repetition-rate copper-vapor laser,” IEEE J. Quantum Electron. 30, 1876–1894 (1994).
[Crossref]

Carman, R.J.

R.J. Carman, “A self-consistent model for a longitudinal discharge excited He-Sr recombination laser,” IEEE J. Quantum Electron. 26, 1588–1607 (1990).
[Crossref]

Chen, Gang

Bai-Liang Pan, Gang Chen, Xing Chen, and Zhi-Xin Yao, “Numerical and experimental investigation on self-terminating and recombination lasers in univalent ions of calcium and strontium,” J. Appl. Phys. 96, 34–39 (2004).
[Crossref]

Chen, Xing

Bai-Liang Pan, Gang Chen, Xing Chen, and Zhi-Xin Yao, “Numerical and experimental investigation on self-terminating and recombination lasers in univalent ions of calcium and strontium,” J. Appl. Phys. 96, 34–39 (2004).
[Crossref]

Collins, G. J.

R. Solanki, W. M. Fairbank, and G. J. Collins, “Multiwatt operation of Cu II and Ag II hollow cathode lasers,” IEEE J. Quantum Electron. 16, 1292–1294 (1980).
[Crossref]

J. R. McNeil, G. J. Collins, K. B. Persson, and D. L. Franzen, “Ultraviolet laser action from Cu II in the 2500-A region,” Appl. Phys. Lett. 28, 207–209 (1976).
[Crossref]

Donko, Z.

Z. Donko, L. Szalai, K. Rozsa, M. Ulbel, and M. Pockl, “High-gain ultraviolet Cu-II laser in a segmented hollow cathode discharge,” IEEE J. Quantum Electron. 34, 47–52 (1998).
[Crossref]

Eichler, H. J.

B. Auschwitz, H. J. Eichler, and W. Wittwer, “Extension of the operating period of an UV Cu II laser by admixture of argon,” Appl. Phys. Lett. 36, 804–805 (1980).
[Crossref]

Fairbank, W. M.

R. Solanki, W. M. Fairbank, and G. J. Collins, “Multiwatt operation of Cu II and Ag II hollow cathode lasers,” IEEE J. Quantum Electron. 16, 1292–1294 (1980).
[Crossref]

Franzen, D. L.

J. R. McNeil, G. J. Collins, K. B. Persson, and D. L. Franzen, “Ultraviolet laser action from Cu II in the 2500-A region,” Appl. Phys. Lett. 28, 207–209 (1976).
[Crossref]

G, Chen

Jin Y, Pan B L, Chen G, Chen K, and Yao Z X, “Numerical study on the terminating mechanisms of copper vapor laser pulse,” Acta Phys. Sin. (in Chinese) 53, 1799–1803 (2004).

Gang, Chen

Chen Gang, Pan Bai-liang, Chen Kun, and Yao Zhi-xin, “A novel excitation circuit used for CuBr lasers,” J. Optoelectronics Laser (in Chinese) 14, 1142–1145 (2003).

Hernqvist, K. G.

K. G. Hernqvist, “Continuous laser oscillation at 2703 A in copper ion,” IEEE J. Quantum Electron. 13, 929–934 (1977).
[Crossref]

Holstein, T.

T. Holstein, “Imprisonment of radiation in gases II,” Phys. Rev. 83, 1159–1168 (1951).
[Crossref]

Jain, K.

K. Jain, “New UV and IR transitions in gold, copper, and cadmium hollow cathode lasers,” IEEE J. Quantum Electron. 16, 387–388 (1980).
[Crossref]

K, Chen

Jin Y, Pan B L, Chen G, Chen K, and Yao Z X, “Numerical study on the terminating mechanisms of copper vapor laser pulse,” Acta Phys. Sin. (in Chinese) 53, 1799–1803 (2004).

Kun, Chen

Chen Gang, Pan Bai-liang, Chen Kun, and Yao Zhi-xin, “A novel excitation circuit used for CuBr lasers,” J. Optoelectronics Laser (in Chinese) 14, 1142–1145 (2003).

Kushner, M. J.

M. J. Kushner, “A self-consistent model for high-repetition rate copper vapor laser,” IEEE J. Quantum Electron. 17, 1761–1764 (1981).
[Crossref]

Little, C. E.

C. E. Little and N. V. Sabotinov, Pulsed Metal Vapor Lasers, 113–124 (C. E. Little and N. V. Sabotinov, Kluwer, Netherlands, 1996).

McNeil, J. R.

J. R. McNeil, G. J. Collins, K. B. Persson, and D. L. Franzen, “Ultraviolet laser action from Cu II in the 2500-A region,” Appl. Phys. Lett. 28, 207–209 (1976).
[Crossref]

Mildren, R. P.

R. J. Carman, R. P. Mildren, M. J. Withford, Daniel J. W. Brown, and J. A. Piper, “Modeling the Plasma Kinetics in a Kinetically Enhanced Copper Vapor Laser Utilizing HCl + H2 Admixtures,” IEEE J. Quantum Electron. 36, 438–449 (2000).
[Crossref]

Pan, Bai-Liang

Bai-Liang Pan, Gang Chen, Xing Chen, and Zhi-Xin Yao, “Numerical and experimental investigation on self-terminating and recombination lasers in univalent ions of calcium and strontium,” J. Appl. Phys. 96, 34–39 (2004).
[Crossref]

Persson, K. B.

J. R. McNeil, G. J. Collins, K. B. Persson, and D. L. Franzen, “Ultraviolet laser action from Cu II in the 2500-A region,” Appl. Phys. Lett. 28, 207–209 (1976).
[Crossref]

Piper, J. A.

R. J. Carman, R. P. Mildren, M. J. Withford, Daniel J. W. Brown, and J. A. Piper, “Modeling the Plasma Kinetics in a Kinetically Enhanced Copper Vapor Laser Utilizing HCl + H2 Admixtures,” IEEE J. Quantum Electron. 36, 438–449 (2000).
[Crossref]

R. J. Carman, J. W. Brown, and J. A. Piper, “A self-consistent model for the discharge kinetics in a high-repetition-rate copper-vapor laser,” IEEE J. Quantum Electron. 30, 1876–1894 (1994).
[Crossref]

Pockl, M.

Z. Donko, L. Szalai, K. Rozsa, M. Ulbel, and M. Pockl, “High-gain ultraviolet Cu-II laser in a segmented hollow cathode discharge,” IEEE J. Quantum Electron. 34, 47–52 (1998).
[Crossref]

Rozsa, K.

Z. Donko, L. Szalai, K. Rozsa, M. Ulbel, and M. Pockl, “High-gain ultraviolet Cu-II laser in a segmented hollow cathode discharge,” IEEE J. Quantum Electron. 34, 47–52 (1998).
[Crossref]

Sabotinov, N. V.

N. K. Vuchkov, K. A. Temelkov, and N. V. Sabotinov, “Effect of hydrogen on the average output power of the UV Cu+ Ne-CuBr laser,” IEEE J. Quantum Electron. 41, 62–65 (2005).
[Crossref]

N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Output parameters and a spectral study of UV Cu+ Ne-CuBr laser,” Opt. & Laser Technology 36, 19–25 (2004).
[Crossref]

N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Influence of the Active Zone Diameter on the UV-Ion Ne-CuBr Laser Performance,” IEEE J. Quantum Electron. 37, 1538–1546 (2001).
[Crossref]

N. K. Vuchkov, K. A. Temelkov, and N. V. Sabotinov, “UV lasing on Cu in Ne-CuBr pulse longitudinal discharge,” IEEE J. Quantum Electron. 35, 1799–1804 (1999).
[Crossref]

C. E. Little and N. V. Sabotinov, Pulsed Metal Vapor Lasers, 113–124 (C. E. Little and N. V. Sabotinov, Kluwer, Netherlands, 1996).

N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Kinetic and experimental study on the influence of the inside tube diameter on the UV ion Ne-CuBr laser output parameters,” in International Conference on Atomic and Molecular Pulsed Lasers IV, V. F. Tarasenko, G. V. Mayer, and G. G. Petrash, eds., Proc. SPIE4747, 156–163 (2002).

Solanki, R.

R. Solanki, W. M. Fairbank, and G. J. Collins, “Multiwatt operation of Cu II and Ag II hollow cathode lasers,” IEEE J. Quantum Electron. 16, 1292–1294 (1980).
[Crossref]

Szalai, L.

Z. Donko, L. Szalai, K. Rozsa, M. Ulbel, and M. Pockl, “High-gain ultraviolet Cu-II laser in a segmented hollow cathode discharge,” IEEE J. Quantum Electron. 34, 47–52 (1998).
[Crossref]

Temelkov, K. A.

N. K. Vuchkov, K. A. Temelkov, and N. V. Sabotinov, “Effect of hydrogen on the average output power of the UV Cu+ Ne-CuBr laser,” IEEE J. Quantum Electron. 41, 62–65 (2005).
[Crossref]

N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Output parameters and a spectral study of UV Cu+ Ne-CuBr laser,” Opt. & Laser Technology 36, 19–25 (2004).
[Crossref]

N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Influence of the Active Zone Diameter on the UV-Ion Ne-CuBr Laser Performance,” IEEE J. Quantum Electron. 37, 1538–1546 (2001).
[Crossref]

N. K. Vuchkov, K. A. Temelkov, and N. V. Sabotinov, “UV lasing on Cu in Ne-CuBr pulse longitudinal discharge,” IEEE J. Quantum Electron. 35, 1799–1804 (1999).
[Crossref]

N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Kinetic and experimental study on the influence of the inside tube diameter on the UV ion Ne-CuBr laser output parameters,” in International Conference on Atomic and Molecular Pulsed Lasers IV, V. F. Tarasenko, G. V. Mayer, and G. G. Petrash, eds., Proc. SPIE4747, 156–163 (2002).

Ulbel, M.

Z. Donko, L. Szalai, K. Rozsa, M. Ulbel, and M. Pockl, “High-gain ultraviolet Cu-II laser in a segmented hollow cathode discharge,” IEEE J. Quantum Electron. 34, 47–52 (1998).
[Crossref]

Vuchkov, N. K.

N. K. Vuchkov, K. A. Temelkov, and N. V. Sabotinov, “Effect of hydrogen on the average output power of the UV Cu+ Ne-CuBr laser,” IEEE J. Quantum Electron. 41, 62–65 (2005).
[Crossref]

N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Output parameters and a spectral study of UV Cu+ Ne-CuBr laser,” Opt. & Laser Technology 36, 19–25 (2004).
[Crossref]

N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Influence of the Active Zone Diameter on the UV-Ion Ne-CuBr Laser Performance,” IEEE J. Quantum Electron. 37, 1538–1546 (2001).
[Crossref]

N. K. Vuchkov, K. A. Temelkov, and N. V. Sabotinov, “UV lasing on Cu in Ne-CuBr pulse longitudinal discharge,” IEEE J. Quantum Electron. 35, 1799–1804 (1999).
[Crossref]

N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Kinetic and experimental study on the influence of the inside tube diameter on the UV ion Ne-CuBr laser output parameters,” in International Conference on Atomic and Molecular Pulsed Lasers IV, V. F. Tarasenko, G. V. Mayer, and G. G. Petrash, eds., Proc. SPIE4747, 156–163 (2002).

Withford, M. J.

R. J. Carman, R. P. Mildren, M. J. Withford, Daniel J. W. Brown, and J. A. Piper, “Modeling the Plasma Kinetics in a Kinetically Enhanced Copper Vapor Laser Utilizing HCl + H2 Admixtures,” IEEE J. Quantum Electron. 36, 438–449 (2000).
[Crossref]

Wittwer, W.

B. Auschwitz, H. J. Eichler, and W. Wittwer, “Extension of the operating period of an UV Cu II laser by admixture of argon,” Appl. Phys. Lett. 36, 804–805 (1980).
[Crossref]

Y, Jin

Jin Y, Pan B L, Chen G, Chen K, and Yao Z X, “Numerical study on the terminating mechanisms of copper vapor laser pulse,” Acta Phys. Sin. (in Chinese) 53, 1799–1803 (2004).

Yao, Zhi-Xin

Bai-Liang Pan, Gang Chen, Xing Chen, and Zhi-Xin Yao, “Numerical and experimental investigation on self-terminating and recombination lasers in univalent ions of calcium and strontium,” J. Appl. Phys. 96, 34–39 (2004).
[Crossref]

Z X, Yao

Jin Y, Pan B L, Chen G, Chen K, and Yao Z X, “Numerical study on the terminating mechanisms of copper vapor laser pulse,” Acta Phys. Sin. (in Chinese) 53, 1799–1803 (2004).

Zahariev, P. V.

N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Output parameters and a spectral study of UV Cu+ Ne-CuBr laser,” Opt. & Laser Technology 36, 19–25 (2004).
[Crossref]

N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Influence of the Active Zone Diameter on the UV-Ion Ne-CuBr Laser Performance,” IEEE J. Quantum Electron. 37, 1538–1546 (2001).
[Crossref]

N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Kinetic and experimental study on the influence of the inside tube diameter on the UV ion Ne-CuBr laser output parameters,” in International Conference on Atomic and Molecular Pulsed Lasers IV, V. F. Tarasenko, G. V. Mayer, and G. G. Petrash, eds., Proc. SPIE4747, 156–163 (2002).

Zhi-xin, Yao

Chen Gang, Pan Bai-liang, Chen Kun, and Yao Zhi-xin, “A novel excitation circuit used for CuBr lasers,” J. Optoelectronics Laser (in Chinese) 14, 1142–1145 (2003).

Acta Phys. Sin. (in Chinese) (1)

Jin Y, Pan B L, Chen G, Chen K, and Yao Z X, “Numerical study on the terminating mechanisms of copper vapor laser pulse,” Acta Phys. Sin. (in Chinese) 53, 1799–1803 (2004).

Appl. Phys. Lett. (2)

B. Auschwitz, H. J. Eichler, and W. Wittwer, “Extension of the operating period of an UV Cu II laser by admixture of argon,” Appl. Phys. Lett. 36, 804–805 (1980).
[Crossref]

J. R. McNeil, G. J. Collins, K. B. Persson, and D. L. Franzen, “Ultraviolet laser action from Cu II in the 2500-A region,” Appl. Phys. Lett. 28, 207–209 (1976).
[Crossref]

IEEE J. Quantum Electron. (11)

K. G. Hernqvist, “Continuous laser oscillation at 2703 A in copper ion,” IEEE J. Quantum Electron. 13, 929–934 (1977).
[Crossref]

R. Solanki, W. M. Fairbank, and G. J. Collins, “Multiwatt operation of Cu II and Ag II hollow cathode lasers,” IEEE J. Quantum Electron. 16, 1292–1294 (1980).
[Crossref]

N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Influence of the Active Zone Diameter on the UV-Ion Ne-CuBr Laser Performance,” IEEE J. Quantum Electron. 37, 1538–1546 (2001).
[Crossref]

K. Jain, “New UV and IR transitions in gold, copper, and cadmium hollow cathode lasers,” IEEE J. Quantum Electron. 16, 387–388 (1980).
[Crossref]

Z. Donko, L. Szalai, K. Rozsa, M. Ulbel, and M. Pockl, “High-gain ultraviolet Cu-II laser in a segmented hollow cathode discharge,” IEEE J. Quantum Electron. 34, 47–52 (1998).
[Crossref]

N. K. Vuchkov, K. A. Temelkov, and N. V. Sabotinov, “UV lasing on Cu in Ne-CuBr pulse longitudinal discharge,” IEEE J. Quantum Electron. 35, 1799–1804 (1999).
[Crossref]

R. J. Carman, R. P. Mildren, M. J. Withford, Daniel J. W. Brown, and J. A. Piper, “Modeling the Plasma Kinetics in a Kinetically Enhanced Copper Vapor Laser Utilizing HCl + H2 Admixtures,” IEEE J. Quantum Electron. 36, 438–449 (2000).
[Crossref]

N. K. Vuchkov, K. A. Temelkov, and N. V. Sabotinov, “Effect of hydrogen on the average output power of the UV Cu+ Ne-CuBr laser,” IEEE J. Quantum Electron. 41, 62–65 (2005).
[Crossref]

M. J. Kushner, “A self-consistent model for high-repetition rate copper vapor laser,” IEEE J. Quantum Electron. 17, 1761–1764 (1981).
[Crossref]

R.J. Carman, “A self-consistent model for a longitudinal discharge excited He-Sr recombination laser,” IEEE J. Quantum Electron. 26, 1588–1607 (1990).
[Crossref]

R. J. Carman, J. W. Brown, and J. A. Piper, “A self-consistent model for the discharge kinetics in a high-repetition-rate copper-vapor laser,” IEEE J. Quantum Electron. 30, 1876–1894 (1994).
[Crossref]

J. Appl. Phys. (1)

Bai-Liang Pan, Gang Chen, Xing Chen, and Zhi-Xin Yao, “Numerical and experimental investigation on self-terminating and recombination lasers in univalent ions of calcium and strontium,” J. Appl. Phys. 96, 34–39 (2004).
[Crossref]

J. Optoelectronics Laser (in Chinese) (1)

Chen Gang, Pan Bai-liang, Chen Kun, and Yao Zhi-xin, “A novel excitation circuit used for CuBr lasers,” J. Optoelectronics Laser (in Chinese) 14, 1142–1145 (2003).

Opt. & Laser Technology (1)

N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Output parameters and a spectral study of UV Cu+ Ne-CuBr laser,” Opt. & Laser Technology 36, 19–25 (2004).
[Crossref]

Phys. Rev. (1)

T. Holstein, “Imprisonment of radiation in gases II,” Phys. Rev. 83, 1159–1168 (1951).
[Crossref]

Other (2)

C. E. Little and N. V. Sabotinov, Pulsed Metal Vapor Lasers, 113–124 (C. E. Little and N. V. Sabotinov, Kluwer, Netherlands, 1996).

N. K. Vuchkov, K. A. Temelkov, P. V. Zahariev, and N. V. Sabotinov, “Kinetic and experimental study on the influence of the inside tube diameter on the UV ion Ne-CuBr laser output parameters,” in International Conference on Atomic and Molecular Pulsed Lasers IV, V. F. Tarasenko, G. V. Mayer, and G. G. Petrash, eds., Proc. SPIE4747, 156–163 (2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a). Schematic diagram of Cu atom energy levels. (b). Schematic diagram of Cu+ and Ne energy levels

Fig. 2.
Fig. 2.

Discharge current I of the laser tube

Fig. 3.
Fig. 3.

Evolution of the electron temperature

Fig. 4.
Fig. 4.

Temporal evolutions of population densities of main ions and electron on the tube axis.

Fig. 5.
Fig. 5.

Temporal evolutions of Cu+uand Cu+l population

Fig. 6.
Fig. 6.

Influence of the tube radius R on Cu+m density and the laser output characteristic

Fig. 7.
Fig. 7.

Influence of Br on Nem and Ne+ densities

Fig. 8.
Fig. 8.

Influence of Br on Cu+l density and the laser power

Tables (1)

Tables Icon

Table 1. Standard Initial Conditions

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

N e + + C u 0 ( C u + ) * ( 5 s ) + N e + Δ E .
N e M + C u 0 N e + ( C u + ) * ( 4 p )
d C u * dt = κ i · Cu · n e κ k · C u * · n e γ i · C u * · n e + α k · C u + · n e 2 ± A i · C u * ± I p · γ 0 · h ν · Γ ¯ .
d C u + dt = κ i · Cu · n e + i κ i · C u * · n e + k γ k · C u + * · n e α i · C u + · n e 2 · Γ ¯ .
d C u + m dt = κ · C u + · n e + k γ k · ( C u + ) k · n e + i A i 1 · ( C u + ) i + K p 1 · N e m · C u
k k k · C u + m · n e γ · C u + m · n e · Γ ¯ .
d C u + l dt = K p 2 · N e m · C u + i k i · ( C u + ) i · n e + k γ k · ( C u + ) k · n e + i A i 2 · ( C u + ) i
k k k · C u + l · n e i γ i · C u + l · n e + B · I p · Δ N i A 2 i · C u + l · Γ ¯ .
d C u + u dt = K CT · N e + · C u + i k i · ( C u + ) i · n e + k γ k · ( C u + ) k · n e i A 3 i · C u + u
k k k · C u + u · n e i γ i · C u + u · n e B · I p · Δ N · Γ ¯ .
d I p d t = c I p γ 0 L 0 / L c + I p c ln ( R 1 R 2 ) ( 2 L c ) + A 1 C u + u h ν c d Ω ( 4 π ) .
d ( 1.5 n e K b T e ) dt = n e e 2 E 2 m e ν t + ij γ ij n e N j ε ij + j η p C u N j ε p + ij β m N e i * N e j * ε m
2 m e j ( ν j m j ) · 1.5 n e k b ( T e T 0 ) ij κ ij N i n e ε ij .
A eff = 1.6 A [ ( k 0 R + ϕ ) [ π ln ( k 0 R + ϕ ) ] 1 2 ] 1 ( k 0 R > 3 ) ,
A eff = A exp ( 0.653 [ k 0 R ] 0.81 ) ( k 0 R < 3 ) .

Metrics