Abstract

Configuration of a novel compact dispersive and focusing device based on a Curved Waveguide Grating (CWG) is presented, which is essentially an integrated optic wavelength demultiplexer consisting of a curved stripe waveguide with tilted grating, a slab waveguide adjacent to it, and a set of output waveguides locate on focal line of the curved waveguide. Underlying wavelength demultiplexing mechanism of CWG is theoretically illustrated by employing the Fourier optics approach. Analysis shows that device based on CWG possesses fine wavelength resolution, compact configuration, and potentially low cost as well, which make it a promising wavelength demultiplexer, or a network performance monitor, in DWDM optical networks.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Smit and C. van Dam, "PHASAR-based WDM-devices: Principles, design and application," IEEE J. Sel. Top Quantum.Electron. 2, 236-250 (1996).
    [CrossRef]
  2. E. Gini, W. Hunziker, H. Melchior, "Polarization independent InP WDM multiplexer/demultiplexer module," IEEE J. Lightwave Technol. 16, 625-630 (1998).
    [CrossRef]
  3. C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, "Planar waveguide optical spectrum analyzer using a UV-induced grating," IEEE J. Sel. Top Quantum Electron. 4, 925-929 (1998).
    [CrossRef]
  4. A. Yariv, M. Nakamura, "Periodic structures for integrated optics," IEEE J. Quantum. Electron. 13, 233-252 (1977).
    [CrossRef]
  5. H. Takenouchi, H. Tsuda and T. Kurokawa, "Analysis of optical signal processing using an arrayed-waveguide grating," Opt. Express 6, 124-135 (2000).
    [CrossRef] [PubMed]
  6. P. Munoz, D. Pastor and J. Capmany, "Analysis and design of arrayed waveguide gratings with MMI coupler," Opt. Express 9, 328-338 (2001).
    [CrossRef] [PubMed]
  7. P. Munoz, D. Pastor and J. Capmany, "Modeling and design of arrayed waveguide gratings," IEEE J. Lightwave. Technol. 20, 661-674 (2002).
    [CrossRef]

2002

P. Munoz, D. Pastor and J. Capmany, "Modeling and design of arrayed waveguide gratings," IEEE J. Lightwave. Technol. 20, 661-674 (2002).
[CrossRef]

2001

2000

1998

E. Gini, W. Hunziker, H. Melchior, "Polarization independent InP WDM multiplexer/demultiplexer module," IEEE J. Lightwave Technol. 16, 625-630 (1998).
[CrossRef]

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, "Planar waveguide optical spectrum analyzer using a UV-induced grating," IEEE J. Sel. Top Quantum Electron. 4, 925-929 (1998).
[CrossRef]

1996

M. K. Smit and C. van Dam, "PHASAR-based WDM-devices: Principles, design and application," IEEE J. Sel. Top Quantum.Electron. 2, 236-250 (1996).
[CrossRef]

1977

A. Yariv, M. Nakamura, "Periodic structures for integrated optics," IEEE J. Quantum. Electron. 13, 233-252 (1977).
[CrossRef]

Capmany, J.

P. Munoz, D. Pastor and J. Capmany, "Modeling and design of arrayed waveguide gratings," IEEE J. Lightwave. Technol. 20, 661-674 (2002).
[CrossRef]

P. Munoz, D. Pastor and J. Capmany, "Analysis and design of arrayed waveguide gratings with MMI coupler," Opt. Express 9, 328-338 (2001).
[CrossRef] [PubMed]

DeMarco, J.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, "Planar waveguide optical spectrum analyzer using a UV-induced grating," IEEE J. Sel. Top Quantum Electron. 4, 925-929 (1998).
[CrossRef]

Gini, E.

E. Gini, W. Hunziker, H. Melchior, "Polarization independent InP WDM multiplexer/demultiplexer module," IEEE J. Lightwave Technol. 16, 625-630 (1998).
[CrossRef]

Hunziker, W.

E. Gini, W. Hunziker, H. Melchior, "Polarization independent InP WDM multiplexer/demultiplexer module," IEEE J. Lightwave Technol. 16, 625-630 (1998).
[CrossRef]

Kurokawa, T.

Laskowski, E. J.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, "Planar waveguide optical spectrum analyzer using a UV-induced grating," IEEE J. Sel. Top Quantum Electron. 4, 925-929 (1998).
[CrossRef]

Madsen, C. K.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, "Planar waveguide optical spectrum analyzer using a UV-induced grating," IEEE J. Sel. Top Quantum Electron. 4, 925-929 (1998).
[CrossRef]

Melchior, H.

E. Gini, W. Hunziker, H. Melchior, "Polarization independent InP WDM multiplexer/demultiplexer module," IEEE J. Lightwave Technol. 16, 625-630 (1998).
[CrossRef]

Milbrodt, M. A.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, "Planar waveguide optical spectrum analyzer using a UV-induced grating," IEEE J. Sel. Top Quantum Electron. 4, 925-929 (1998).
[CrossRef]

Muehlner, D.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, "Planar waveguide optical spectrum analyzer using a UV-induced grating," IEEE J. Sel. Top Quantum Electron. 4, 925-929 (1998).
[CrossRef]

Munoz, P.

P. Munoz, D. Pastor and J. Capmany, "Modeling and design of arrayed waveguide gratings," IEEE J. Lightwave. Technol. 20, 661-674 (2002).
[CrossRef]

P. Munoz, D. Pastor and J. Capmany, "Analysis and design of arrayed waveguide gratings with MMI coupler," Opt. Express 9, 328-338 (2001).
[CrossRef] [PubMed]

Nakamura, M.

A. Yariv, M. Nakamura, "Periodic structures for integrated optics," IEEE J. Quantum. Electron. 13, 233-252 (1977).
[CrossRef]

Pastor, D.

P. Munoz, D. Pastor and J. Capmany, "Modeling and design of arrayed waveguide gratings," IEEE J. Lightwave. Technol. 20, 661-674 (2002).
[CrossRef]

P. Munoz, D. Pastor and J. Capmany, "Analysis and design of arrayed waveguide gratings with MMI coupler," Opt. Express 9, 328-338 (2001).
[CrossRef] [PubMed]

Smit, M. K.

M. K. Smit and C. van Dam, "PHASAR-based WDM-devices: Principles, design and application," IEEE J. Sel. Top Quantum.Electron. 2, 236-250 (1996).
[CrossRef]

Strasser, T. A.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, "Planar waveguide optical spectrum analyzer using a UV-induced grating," IEEE J. Sel. Top Quantum Electron. 4, 925-929 (1998).
[CrossRef]

Takenouchi, H.

Tsuda, H.

van Dam, C.

M. K. Smit and C. van Dam, "PHASAR-based WDM-devices: Principles, design and application," IEEE J. Sel. Top Quantum.Electron. 2, 236-250 (1996).
[CrossRef]

Wagener, J.

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, "Planar waveguide optical spectrum analyzer using a UV-induced grating," IEEE J. Sel. Top Quantum Electron. 4, 925-929 (1998).
[CrossRef]

Yariv, A.

A. Yariv, M. Nakamura, "Periodic structures for integrated optics," IEEE J. Quantum. Electron. 13, 233-252 (1977).
[CrossRef]

Electron.

M. K. Smit and C. van Dam, "PHASAR-based WDM-devices: Principles, design and application," IEEE J. Sel. Top Quantum.Electron. 2, 236-250 (1996).
[CrossRef]

C. K. Madsen, J. Wagener, T. A. Strasser, D. Muehlner, M. A. Milbrodt, E. J. Laskowski, and J. DeMarco, "Planar waveguide optical spectrum analyzer using a UV-induced grating," IEEE J. Sel. Top Quantum Electron. 4, 925-929 (1998).
[CrossRef]

IEEE J. Lightwave Technol.

E. Gini, W. Hunziker, H. Melchior, "Polarization independent InP WDM multiplexer/demultiplexer module," IEEE J. Lightwave Technol. 16, 625-630 (1998).
[CrossRef]

IEEE J. Lightwave. Technol.

P. Munoz, D. Pastor and J. Capmany, "Modeling and design of arrayed waveguide gratings," IEEE J. Lightwave. Technol. 20, 661-674 (2002).
[CrossRef]

IEEE J. Quantum. Electron.

A. Yariv, M. Nakamura, "Periodic structures for integrated optics," IEEE J. Quantum. Electron. 13, 233-252 (1977).
[CrossRef]

Opt. Express

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of the CWG.

Fig. 2.
Fig. 2.

Bragg diffraction for a local section of the CWG.

Fig. 3.
Fig. 3.

Schematic of amplitude factor of diffraction field.

Fig. 4.
Fig. 4.

Amplitude (left) and phase (right) factor of E1(x1).

Fig. 5.
Fig. 5.

Relationship between diffracted light field and grating structure.

Fig. 6.
Fig. 6.

Diffraction-limited and calculated focused spot size for Rowland circle configuration for grating length 10mm and 20mm.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

2 n eff π λ 2 n c π λ cos θ = m 2 π Λ .
Λ = m λ 0 n eff = mc n eff ν 0 ,
E ( x 0 , y ) = U g ( x 0 ) f 0 ( y ) e i β ( x 0 + N Λ ) .
β = 2 π n eff λ = 2 π n eff c ν .
f 0 ( y ) = ( 2 π ω 0 2 ) 1 4 e ( y ω 0 ) 2 .
U g ( x 0 ) = U g ( N Λ ) e C ( x 0 + N Λ ) ,
P g ( x 0 ) = 1 2 ( ε μ 0 ) 1 2 U g 2 ( x 0 ) .
P g ( x 0 ) = 1 2 ( ε μ 0 ) 1 2 U g 2 ( N Λ ) e 2 C ( x 0 + N Λ ) .
P d ( x 0 ) = d P g ( x 0 ) = d P g ( x 0 ) d x 0 d x 0 .
P d ( x 0 ) = d P g ( x 0 ) d x 0 Λ .
P d ( x 0 ) = 1 2 2 C Λ ( ε μ 0 ) 1 2 U 2 ( N Λ ) e 2 C ( x 0 + N Λ ) .
U d ( x 0 ) = ( 2 C Λ ) 1 2 U ( N Λ ) e C ( x 0 + N Λ ) ( N Λ x 0 N Λ ) ,
φ ( x 0 , ν ) = ϕ ( ν ) e i 2 π n eff ν c x 0 ,
ϕ ( ν ) = e i ( 2 π n eff ν c N Λ + κ ) .
E d ( x 0 , ν ) = [ U d ( x 0 ) φ ( x 0 , ν ) δ Λ ( x 0 ) ] * g ( x 0 ) .
δ Λ ( x 0 ) = r = + δ ( x 0 r Λ ) .
f 1 ( x 1 , ν ) = [ E 1 ( x 1 ) * Φ ( x 1 , ν ) * Δ Λ ( x 1 ) ] G ( x 1 ) ,
E 1 ( x 1 ) = FT [ U d ( x 0 ) ] u = x 1 α ,
E 1 ( x 1 ) = ( 2 C Λ ) 1 2 U ( N Λ ) [ C 2 + ( 2 π x 1 α ) 2 ] 1 2 e i tan 1 ( 2 π x 1 C α ) ( e CN Λ e i ( 2 π x 1 N Λ α ) e CN Λ e i ( 2 π x 1 N Λ α ) ) ,
Φ ( x 1 , ν ) = FT [ φ ( x 0 , ν ) ] u = x 1 α = c L f n s ν 0 ϕ ( ν ) δ ( x 1 + n eff L f n s ν 0 ν ) .
Δ Λ ( x 1 ) = FT [ δ Λ ( x 0 ) ] u = x 1 α = r = + δ ( x 1 r n eff L f n s m ) .
G ( x 1 ) = FT [ g ( x 0 ) ] u = x 1 α .
α ν = c L f n s ν = λ L f n s ,
α ν = α ν 0 = α .
f 1 ( x 1 , ν ) = G ( x 1 ) r = + E 1 ( x 1 r n eff L f n c m + ν γ ) .
γ = n s ν 0 n eff L f .
Δ x 1 , FSR = n eff L f n c m .
g ( x 0 ) = W L W T rect ( x 0 W T ) f ( x 0 ) .
rect ( x 0 W T ) = { 1 for x 0 W T 2 0 others .
g ( x 0 ) = ( 2 π ω g 2 ) 1 4 e ( x 0 ω g ) 2 .
G ( x 1 ) = ( 2 π ω g 2 ) 1 4 e ( π ω g x 1 α ) 2 .

Metrics