Abstract

Multiphoton excited polymerization has attracted increasing attention as a powerful 3 dimensional nano/microfabrication tool. The nonlinear excitation confines the fabrication region to the focal volume allowing the potential to achieve freeform fabrication with submicron capabilities. We report the adaptation and use of a computer aided design (CAD) approach, based on rapid prototyping software, which exploits this potential for fabricating with protein and polymers in biologically compatible aqueous environments. 3D structures are drawn in the STL format creating a solid model that can be sliced, where the individual sections are then serially fabricated without overwriting previous layers. The method is shown for potential biological applications including microfluidics, cell entrapment, and tissue engineering

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Lee, S. A. Pruzinsky, and P. V. Braun, "Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals," Adv. Mater. 14, 271-274 (2002).
    [CrossRef]
  2. W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
    [CrossRef] [PubMed]
  3. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Microfabrication: finer features for functional microdevices," Nature 412, 697-698 (2001).
    [CrossRef] [PubMed]
  4. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
    [CrossRef] [PubMed]
  5. B. Kaehr, R. Allen, D. J. Javier, J. Currie, and J. B. Shear, "Guiding neuronal development with in situ microfabrication," Proc. Natl. Acad. Sci. U S A 101, 16104-16108 (2004).
    [CrossRef] [PubMed]
  6. J. H. Strickler and W. W. Webb, "Three-dimensional optical data storage in refractive media by two-photon point excitation," Opt. Lett. 16, 1780-1782 (1991).
    [CrossRef] [PubMed]
  7. C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, "Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs," J. Phys. Chem. B 108, 11256 - 11258 (2004).
    [CrossRef]
  8. F. J. Qi, Y. Li, H. C. Guo, H. Yang, and Q. H. Gong, "Wavy lines in two-photon photopolymerization microfabrication," Opt. Express 12, 4725-4730 (2004).
    [CrossRef] [PubMed]
  9. T. Baldacchini, A. C. Pons, J. Pons, C. N. LaFratta, J. T. Fourkas, Y. Sun, and M. J. Naughton, "Multiphoton laser direct writing of two-dimensional silver structures," Opt. Express 13, 1275-1280 (2005).
    [CrossRef] [PubMed]
  10. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003).
    [CrossRef] [PubMed]
  11. J. Serbin and M. Gu, "Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization," Opt. Express 14, 3563-3568 (2006).
    [CrossRef] [PubMed]
  12. J. Serbin, A. Ovsianikov, and B. Chichkov, "Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties," Opt. Express 12, 5221-5228 (2004).
    [CrossRef] [PubMed]
  13. A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, "Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices," Acta Biomaterialia 2, 267-275 (2006).
    [CrossRef] [PubMed]
  14. A. Fujita, K. Fujita, O. Nakamura, T. Matsuda, and S. Kawata, "Control of cardiomyocyte orientation on a microscaffold fabricated by photopolymerization with laser beam interference," J Biomed Opt 11, 021015 (2006).
    [CrossRef] [PubMed]
  15. S. Basu, C. W. Wolgemuth, and P. J. Campagnola, "Measurement of normal and anomalous diffusion of dyes within protein structures fabricated via multi-photon excited crosslinking," Biomacromolecules 5, 2347-2357 (2004).
    [CrossRef] [PubMed]
  16. S. Basu and P. J. Campagnola, "Enzymatic activity of alkaline phosphatase inside protein and polymer structures fabricated via multi-photon excitation," Biomacromolecules 5, 572-579 (2004).
    [CrossRef] [PubMed]
  17. S. Basu and P. J. Campagnola, "Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation," J Biomed Mater Res 71A, 359-368 (2004).
    [CrossRef]
  18. S. Basu, L. P. Cunningham, G. Pins, K. Bush, R. Toboada, A. R. Howell, J. Wang, and P. J. Campagnola, "Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: bioactivity and enzymatic degradation," Biomacromolecules 6, 1465-1474 (2005).
    [CrossRef] [PubMed]
  19. G. D. Pins, K. A. Bush, L. P. Cunningham, and P. J. Campagnola, "Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology," J. Biomed. Mat. Res. 78A, 194-204 (2006).
    [CrossRef]
  20. J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, "Reaction efficiencies for sub-micron multi-photon freeform fabrications of proteins and polymers with applications in sustained release," Macromolecules 33, 1514-1523 (2000).
    [CrossRef]
  21. M. Sridhar, S. Basu, V. L. Scranton, and P. J. Campagnola, "Construction of a laser scanning microscope for multiphoton excited optical fabrication," Rev. Sci. Instrum. 74, 3474-3477 (2003).
    [CrossRef]
  22. S. A. Pruzinsky and P. V. Braun, "Fabrication and characterization of two-photon polymerized features in colloidal crystals," Adv. Funct. Mater. 15, 1995-2004 (2005).
    [CrossRef]
  23. S. Maruo, K. Ikuta, and H. Korogi, "Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography," J. Microelectromech. Syst. 12, 533-539 (2003).
    [CrossRef]
  24. J. Gailit, C. Clarke, D. Newman, M. G. Tonnesen, M. W. Mosesson, and R. A. Clark, "Human fibroblasts bind directly to fibrinogen at RGD sites through integrin alpha(v)beta3," Exp Cell Res 232, 118-126 (1997).
    [CrossRef] [PubMed]
  25. W.-G. Koh, A. Revzin, and M. V. Pishko, "Poly(ethylene glycol) Hydrogel microstructures encapsulating living cells," Langmuir 18, 2459-2462 (2002).
    [CrossRef] [PubMed]
  26. Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, "A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds," J Biomed Mater Res A 77, 396-405 (2006).
    [PubMed]
  27. M. N. Cooke, J. P. Fisher, D. Dean, C. Rimnac, and A. G. Mikos, "Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth," J Biomed Mater Res B Appl Biomater 64B, 65-69 (2003).
    [CrossRef]

2006 (5)

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, "Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices," Acta Biomaterialia 2, 267-275 (2006).
[CrossRef] [PubMed]

A. Fujita, K. Fujita, O. Nakamura, T. Matsuda, and S. Kawata, "Control of cardiomyocyte orientation on a microscaffold fabricated by photopolymerization with laser beam interference," J Biomed Opt 11, 021015 (2006).
[CrossRef] [PubMed]

G. D. Pins, K. A. Bush, L. P. Cunningham, and P. J. Campagnola, "Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology," J. Biomed. Mat. Res. 78A, 194-204 (2006).
[CrossRef]

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, "A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds," J Biomed Mater Res A 77, 396-405 (2006).
[PubMed]

J. Serbin and M. Gu, "Superprism phenomena in waveguide-coupled woodpile structures fabricated by two-photon polymerization," Opt. Express 14, 3563-3568 (2006).
[CrossRef] [PubMed]

2005 (3)

T. Baldacchini, A. C. Pons, J. Pons, C. N. LaFratta, J. T. Fourkas, Y. Sun, and M. J. Naughton, "Multiphoton laser direct writing of two-dimensional silver structures," Opt. Express 13, 1275-1280 (2005).
[CrossRef] [PubMed]

S. A. Pruzinsky and P. V. Braun, "Fabrication and characterization of two-photon polymerized features in colloidal crystals," Adv. Funct. Mater. 15, 1995-2004 (2005).
[CrossRef]

S. Basu, L. P. Cunningham, G. Pins, K. Bush, R. Toboada, A. R. Howell, J. Wang, and P. J. Campagnola, "Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: bioactivity and enzymatic degradation," Biomacromolecules 6, 1465-1474 (2005).
[CrossRef] [PubMed]

2004 (7)

S. Basu, C. W. Wolgemuth, and P. J. Campagnola, "Measurement of normal and anomalous diffusion of dyes within protein structures fabricated via multi-photon excited crosslinking," Biomacromolecules 5, 2347-2357 (2004).
[CrossRef] [PubMed]

S. Basu and P. J. Campagnola, "Enzymatic activity of alkaline phosphatase inside protein and polymer structures fabricated via multi-photon excitation," Biomacromolecules 5, 572-579 (2004).
[CrossRef] [PubMed]

S. Basu and P. J. Campagnola, "Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation," J Biomed Mater Res 71A, 359-368 (2004).
[CrossRef]

B. Kaehr, R. Allen, D. J. Javier, J. Currie, and J. B. Shear, "Guiding neuronal development with in situ microfabrication," Proc. Natl. Acad. Sci. U S A 101, 16104-16108 (2004).
[CrossRef] [PubMed]

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, "Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs," J. Phys. Chem. B 108, 11256 - 11258 (2004).
[CrossRef]

F. J. Qi, Y. Li, H. C. Guo, H. Yang, and Q. H. Gong, "Wavy lines in two-photon photopolymerization microfabrication," Opt. Express 12, 4725-4730 (2004).
[CrossRef] [PubMed]

J. Serbin, A. Ovsianikov, and B. Chichkov, "Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties," Opt. Express 12, 5221-5228 (2004).
[CrossRef] [PubMed]

2003 (4)

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frhlich, and M. Popall, "Femtosecond laser-induced two-photon polymerization of inorganic organic hybrid materials for applications in photonics," Opt. Lett. 28, 301-303 (2003).
[CrossRef] [PubMed]

M. Sridhar, S. Basu, V. L. Scranton, and P. J. Campagnola, "Construction of a laser scanning microscope for multiphoton excited optical fabrication," Rev. Sci. Instrum. 74, 3474-3477 (2003).
[CrossRef]

S. Maruo, K. Ikuta, and H. Korogi, "Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography," J. Microelectromech. Syst. 12, 533-539 (2003).
[CrossRef]

M. N. Cooke, J. P. Fisher, D. Dean, C. Rimnac, and A. G. Mikos, "Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth," J Biomed Mater Res B Appl Biomater 64B, 65-69 (2003).
[CrossRef]

2002 (3)

W. Lee, S. A. Pruzinsky, and P. V. Braun, "Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals," Adv. Mater. 14, 271-274 (2002).
[CrossRef]

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

W.-G. Koh, A. Revzin, and M. V. Pishko, "Poly(ethylene glycol) Hydrogel microstructures encapsulating living cells," Langmuir 18, 2459-2462 (2002).
[CrossRef] [PubMed]

2001 (1)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Microfabrication: finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

2000 (1)

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, "Reaction efficiencies for sub-micron multi-photon freeform fabrications of proteins and polymers with applications in sustained release," Macromolecules 33, 1514-1523 (2000).
[CrossRef]

1997 (2)

J. Gailit, C. Clarke, D. Newman, M. G. Tonnesen, M. W. Mosesson, and R. A. Clark, "Human fibroblasts bind directly to fibrinogen at RGD sites through integrin alpha(v)beta3," Exp Cell Res 232, 118-126 (1997).
[CrossRef] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
[CrossRef] [PubMed]

1991 (1)

Allen, R.

B. Kaehr, R. Allen, D. J. Javier, J. Currie, and J. B. Shear, "Guiding neuronal development with in situ microfabrication," Proc. Natl. Acad. Sci. U S A 101, 16104-16108 (2004).
[CrossRef] [PubMed]

Auyeung, R.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, "Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices," Acta Biomaterialia 2, 267-275 (2006).
[CrossRef] [PubMed]

Baldacchini, T.

T. Baldacchini, A. C. Pons, J. Pons, C. N. LaFratta, J. T. Fourkas, Y. Sun, and M. J. Naughton, "Multiphoton laser direct writing of two-dimensional silver structures," Opt. Express 13, 1275-1280 (2005).
[CrossRef] [PubMed]

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, "Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs," J. Phys. Chem. B 108, 11256 - 11258 (2004).
[CrossRef]

Basu, S.

S. Basu, L. P. Cunningham, G. Pins, K. Bush, R. Toboada, A. R. Howell, J. Wang, and P. J. Campagnola, "Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: bioactivity and enzymatic degradation," Biomacromolecules 6, 1465-1474 (2005).
[CrossRef] [PubMed]

S. Basu and P. J. Campagnola, "Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation," J Biomed Mater Res 71A, 359-368 (2004).
[CrossRef]

S. Basu, C. W. Wolgemuth, and P. J. Campagnola, "Measurement of normal and anomalous diffusion of dyes within protein structures fabricated via multi-photon excited crosslinking," Biomacromolecules 5, 2347-2357 (2004).
[CrossRef] [PubMed]

S. Basu and P. J. Campagnola, "Enzymatic activity of alkaline phosphatase inside protein and polymer structures fabricated via multi-photon excitation," Biomacromolecules 5, 572-579 (2004).
[CrossRef] [PubMed]

M. Sridhar, S. Basu, V. L. Scranton, and P. J. Campagnola, "Construction of a laser scanning microscope for multiphoton excited optical fabrication," Rev. Sci. Instrum. 74, 3474-3477 (2003).
[CrossRef]

Braun, K. L.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

Braun, P. V.

S. A. Pruzinsky and P. V. Braun, "Fabrication and characterization of two-photon polymerized features in colloidal crystals," Adv. Funct. Mater. 15, 1995-2004 (2005).
[CrossRef]

W. Lee, S. A. Pruzinsky, and P. V. Braun, "Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals," Adv. Mater. 14, 271-274 (2002).
[CrossRef]

Bush, K.

S. Basu, L. P. Cunningham, G. Pins, K. Bush, R. Toboada, A. R. Howell, J. Wang, and P. J. Campagnola, "Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: bioactivity and enzymatic degradation," Biomacromolecules 6, 1465-1474 (2005).
[CrossRef] [PubMed]

Bush, K. A.

G. D. Pins, K. A. Bush, L. P. Cunningham, and P. J. Campagnola, "Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology," J. Biomed. Mat. Res. 78A, 194-204 (2006).
[CrossRef]

Cammack, J. K.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

Campagnola, P. J.

G. D. Pins, K. A. Bush, L. P. Cunningham, and P. J. Campagnola, "Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology," J. Biomed. Mat. Res. 78A, 194-204 (2006).
[CrossRef]

S. Basu, L. P. Cunningham, G. Pins, K. Bush, R. Toboada, A. R. Howell, J. Wang, and P. J. Campagnola, "Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: bioactivity and enzymatic degradation," Biomacromolecules 6, 1465-1474 (2005).
[CrossRef] [PubMed]

S. Basu and P. J. Campagnola, "Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation," J Biomed Mater Res 71A, 359-368 (2004).
[CrossRef]

S. Basu and P. J. Campagnola, "Enzymatic activity of alkaline phosphatase inside protein and polymer structures fabricated via multi-photon excitation," Biomacromolecules 5, 572-579 (2004).
[CrossRef] [PubMed]

S. Basu, C. W. Wolgemuth, and P. J. Campagnola, "Measurement of normal and anomalous diffusion of dyes within protein structures fabricated via multi-photon excited crosslinking," Biomacromolecules 5, 2347-2357 (2004).
[CrossRef] [PubMed]

M. Sridhar, S. Basu, V. L. Scranton, and P. J. Campagnola, "Construction of a laser scanning microscope for multiphoton excited optical fabrication," Rev. Sci. Instrum. 74, 3474-3477 (2003).
[CrossRef]

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, "Reaction efficiencies for sub-micron multi-photon freeform fabrications of proteins and polymers with applications in sustained release," Macromolecules 33, 1514-1523 (2000).
[CrossRef]

Chen, S.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, "A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds," J Biomed Mater Res A 77, 396-405 (2006).
[PubMed]

Chichkov, B.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, "Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices," Acta Biomaterialia 2, 267-275 (2006).
[CrossRef] [PubMed]

J. Serbin, A. Ovsianikov, and B. Chichkov, "Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties," Opt. Express 12, 5221-5228 (2004).
[CrossRef] [PubMed]

Chichkov, B. N.

Chrisey, D. B.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, "Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices," Acta Biomaterialia 2, 267-275 (2006).
[CrossRef] [PubMed]

Clark, R. A.

J. Gailit, C. Clarke, D. Newman, M. G. Tonnesen, M. W. Mosesson, and R. A. Clark, "Human fibroblasts bind directly to fibrinogen at RGD sites through integrin alpha(v)beta3," Exp Cell Res 232, 118-126 (1997).
[CrossRef] [PubMed]

Clarke, C.

J. Gailit, C. Clarke, D. Newman, M. G. Tonnesen, M. W. Mosesson, and R. A. Clark, "Human fibroblasts bind directly to fibrinogen at RGD sites through integrin alpha(v)beta3," Exp Cell Res 232, 118-126 (1997).
[CrossRef] [PubMed]

Cooke, M. N.

M. N. Cooke, J. P. Fisher, D. Dean, C. Rimnac, and A. G. Mikos, "Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth," J Biomed Mater Res B Appl Biomater 64B, 65-69 (2003).
[CrossRef]

Cronauer, C.

Cunningham, L. P.

G. D. Pins, K. A. Bush, L. P. Cunningham, and P. J. Campagnola, "Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology," J. Biomed. Mat. Res. 78A, 194-204 (2006).
[CrossRef]

S. Basu, L. P. Cunningham, G. Pins, K. Bush, R. Toboada, A. R. Howell, J. Wang, and P. J. Campagnola, "Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: bioactivity and enzymatic degradation," Biomacromolecules 6, 1465-1474 (2005).
[CrossRef] [PubMed]

Currie, J.

B. Kaehr, R. Allen, D. J. Javier, J. Currie, and J. B. Shear, "Guiding neuronal development with in situ microfabrication," Proc. Natl. Acad. Sci. U S A 101, 16104-16108 (2004).
[CrossRef] [PubMed]

Dean, D.

M. N. Cooke, J. P. Fisher, D. Dean, C. Rimnac, and A. G. Mikos, "Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth," J Biomed Mater Res B Appl Biomater 64B, 65-69 (2003).
[CrossRef]

Domann, G.

Doraiswamy, A.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, "Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices," Acta Biomaterialia 2, 267-275 (2006).
[CrossRef] [PubMed]

Egbert, A.

Epling, G. A.

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, "Reaction efficiencies for sub-micron multi-photon freeform fabrications of proteins and polymers with applications in sustained release," Macromolecules 33, 1514-1523 (2000).
[CrossRef]

Farrer, R. A.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, "Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs," J. Phys. Chem. B 108, 11256 - 11258 (2004).
[CrossRef]

Fisher, J. P.

M. N. Cooke, J. P. Fisher, D. Dean, C. Rimnac, and A. G. Mikos, "Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth," J Biomed Mater Res B Appl Biomater 64B, 65-69 (2003).
[CrossRef]

Fourkas, J. T.

T. Baldacchini, A. C. Pons, J. Pons, C. N. LaFratta, J. T. Fourkas, Y. Sun, and M. J. Naughton, "Multiphoton laser direct writing of two-dimensional silver structures," Opt. Express 13, 1275-1280 (2005).
[CrossRef] [PubMed]

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, "Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs," J. Phys. Chem. B 108, 11256 - 11258 (2004).
[CrossRef]

Frhlich, L.

Fujita, A.

A. Fujita, K. Fujita, O. Nakamura, T. Matsuda, and S. Kawata, "Control of cardiomyocyte orientation on a microscaffold fabricated by photopolymerization with laser beam interference," J Biomed Opt 11, 021015 (2006).
[CrossRef] [PubMed]

Fujita, K.

A. Fujita, K. Fujita, O. Nakamura, T. Matsuda, and S. Kawata, "Control of cardiomyocyte orientation on a microscaffold fabricated by photopolymerization with laser beam interference," J Biomed Opt 11, 021015 (2006).
[CrossRef] [PubMed]

Gailit, J.

J. Gailit, C. Clarke, D. Newman, M. G. Tonnesen, M. W. Mosesson, and R. A. Clark, "Human fibroblasts bind directly to fibrinogen at RGD sites through integrin alpha(v)beta3," Exp Cell Res 232, 118-126 (1997).
[CrossRef] [PubMed]

Gong, Q. H.

Goodman, S. L.

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, "Reaction efficiencies for sub-micron multi-photon freeform fabrications of proteins and polymers with applications in sustained release," Macromolecules 33, 1514-1523 (2000).
[CrossRef]

Gu, M.

Guo, H. C.

Houbertz, R.

Howell, A. R.

S. Basu, L. P. Cunningham, G. Pins, K. Bush, R. Toboada, A. R. Howell, J. Wang, and P. J. Campagnola, "Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: bioactivity and enzymatic degradation," Biomacromolecules 6, 1465-1474 (2005).
[CrossRef] [PubMed]

Ikuta, K.

S. Maruo, K. Ikuta, and H. Korogi, "Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography," J. Microelectromech. Syst. 12, 533-539 (2003).
[CrossRef]

Javier, D. J.

B. Kaehr, R. Allen, D. J. Javier, J. Currie, and J. B. Shear, "Guiding neuronal development with in situ microfabrication," Proc. Natl. Acad. Sci. U S A 101, 16104-16108 (2004).
[CrossRef] [PubMed]

Jin, C.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, "Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices," Acta Biomaterialia 2, 267-275 (2006).
[CrossRef] [PubMed]

Kaehr, B.

B. Kaehr, R. Allen, D. J. Javier, J. Currie, and J. B. Shear, "Guiding neuronal development with in situ microfabrication," Proc. Natl. Acad. Sci. U S A 101, 16104-16108 (2004).
[CrossRef] [PubMed]

Kawata, S.

A. Fujita, K. Fujita, O. Nakamura, T. Matsuda, and S. Kawata, "Control of cardiomyocyte orientation on a microscaffold fabricated by photopolymerization with laser beam interference," J Biomed Opt 11, 021015 (2006).
[CrossRef] [PubMed]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Microfabrication: finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
[CrossRef] [PubMed]

Koh, W.-G.

W.-G. Koh, A. Revzin, and M. V. Pishko, "Poly(ethylene glycol) Hydrogel microstructures encapsulating living cells," Langmuir 18, 2459-2462 (2002).
[CrossRef] [PubMed]

Korogi, H.

S. Maruo, K. Ikuta, and H. Korogi, "Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography," J. Microelectromech. Syst. 12, 533-539 (2003).
[CrossRef]

Kuebler, S. M.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

LaFratta, C. N.

T. Baldacchini, A. C. Pons, J. Pons, C. N. LaFratta, J. T. Fourkas, Y. Sun, and M. J. Naughton, "Multiphoton laser direct writing of two-dimensional silver structures," Opt. Express 13, 1275-1280 (2005).
[CrossRef] [PubMed]

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, "Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs," J. Phys. Chem. B 108, 11256 - 11258 (2004).
[CrossRef]

Lee, W.

W. Lee, S. A. Pruzinsky, and P. V. Braun, "Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals," Adv. Mater. 14, 271-274 (2002).
[CrossRef]

Li, Y.

Lu, Y.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, "A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds," J Biomed Mater Res A 77, 396-405 (2006).
[PubMed]

Mageswaran, P.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, "Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices," Acta Biomaterialia 2, 267-275 (2006).
[CrossRef] [PubMed]

Mapili, G.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, "A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds," J Biomed Mater Res A 77, 396-405 (2006).
[PubMed]

Marder, S. R.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

Maruo, S.

S. Maruo, K. Ikuta, and H. Korogi, "Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography," J. Microelectromech. Syst. 12, 533-539 (2003).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
[CrossRef] [PubMed]

Matsuda, T.

A. Fujita, K. Fujita, O. Nakamura, T. Matsuda, and S. Kawata, "Control of cardiomyocyte orientation on a microscaffold fabricated by photopolymerization with laser beam interference," J Biomed Opt 11, 021015 (2006).
[CrossRef] [PubMed]

Mente, P.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, "Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices," Acta Biomaterialia 2, 267-275 (2006).
[CrossRef] [PubMed]

Mikos, A. G.

M. N. Cooke, J. P. Fisher, D. Dean, C. Rimnac, and A. G. Mikos, "Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth," J Biomed Mater Res B Appl Biomater 64B, 65-69 (2003).
[CrossRef]

Modi, R.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, "Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices," Acta Biomaterialia 2, 267-275 (2006).
[CrossRef] [PubMed]

Mosesson, M. W.

J. Gailit, C. Clarke, D. Newman, M. G. Tonnesen, M. W. Mosesson, and R. A. Clark, "Human fibroblasts bind directly to fibrinogen at RGD sites through integrin alpha(v)beta3," Exp Cell Res 232, 118-126 (1997).
[CrossRef] [PubMed]

Nakamura, O.

A. Fujita, K. Fujita, O. Nakamura, T. Matsuda, and S. Kawata, "Control of cardiomyocyte orientation on a microscaffold fabricated by photopolymerization with laser beam interference," J Biomed Opt 11, 021015 (2006).
[CrossRef] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
[CrossRef] [PubMed]

Narayan, R. J.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, "Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices," Acta Biomaterialia 2, 267-275 (2006).
[CrossRef] [PubMed]

Naughton, M. J.

T. Baldacchini, A. C. Pons, J. Pons, C. N. LaFratta, J. T. Fourkas, Y. Sun, and M. J. Naughton, "Multiphoton laser direct writing of two-dimensional silver structures," Opt. Express 13, 1275-1280 (2005).
[CrossRef] [PubMed]

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, "Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs," J. Phys. Chem. B 108, 11256 - 11258 (2004).
[CrossRef]

Newman, D.

J. Gailit, C. Clarke, D. Newman, M. G. Tonnesen, M. W. Mosesson, and R. A. Clark, "Human fibroblasts bind directly to fibrinogen at RGD sites through integrin alpha(v)beta3," Exp Cell Res 232, 118-126 (1997).
[CrossRef] [PubMed]

Ober, C. K.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

Ostendorf, A.

Ovsianikov, A.

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, "Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices," Acta Biomaterialia 2, 267-275 (2006).
[CrossRef] [PubMed]

J. Serbin, A. Ovsianikov, and B. Chichkov, "Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties," Opt. Express 12, 5221-5228 (2004).
[CrossRef] [PubMed]

Perry, J. W.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

Pins, G.

S. Basu, L. P. Cunningham, G. Pins, K. Bush, R. Toboada, A. R. Howell, J. Wang, and P. J. Campagnola, "Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: bioactivity and enzymatic degradation," Biomacromolecules 6, 1465-1474 (2005).
[CrossRef] [PubMed]

Pins, G. D.

G. D. Pins, K. A. Bush, L. P. Cunningham, and P. J. Campagnola, "Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology," J. Biomed. Mat. Res. 78A, 194-204 (2006).
[CrossRef]

Pishko, M. V.

W.-G. Koh, A. Revzin, and M. V. Pishko, "Poly(ethylene glycol) Hydrogel microstructures encapsulating living cells," Langmuir 18, 2459-2462 (2002).
[CrossRef] [PubMed]

Pitts, J. D.

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, "Reaction efficiencies for sub-micron multi-photon freeform fabrications of proteins and polymers with applications in sustained release," Macromolecules 33, 1514-1523 (2000).
[CrossRef]

Pons, A. C.

Pons, J.

Popall, M.

Pruzinsky, S. A.

S. A. Pruzinsky and P. V. Braun, "Fabrication and characterization of two-photon polymerized features in colloidal crystals," Adv. Funct. Mater. 15, 1995-2004 (2005).
[CrossRef]

W. Lee, S. A. Pruzinsky, and P. V. Braun, "Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals," Adv. Mater. 14, 271-274 (2002).
[CrossRef]

Qi, F. J.

Revzin, A.

W.-G. Koh, A. Revzin, and M. V. Pishko, "Poly(ethylene glycol) Hydrogel microstructures encapsulating living cells," Langmuir 18, 2459-2462 (2002).
[CrossRef] [PubMed]

Rimnac, C.

M. N. Cooke, J. P. Fisher, D. Dean, C. Rimnac, and A. G. Mikos, "Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth," J Biomed Mater Res B Appl Biomater 64B, 65-69 (2003).
[CrossRef]

Roy, K.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, "A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds," J Biomed Mater Res A 77, 396-405 (2006).
[PubMed]

Saleh, B. E. A.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, "Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs," J. Phys. Chem. B 108, 11256 - 11258 (2004).
[CrossRef]

Schulz, J.

Scranton, V. L.

M. Sridhar, S. Basu, V. L. Scranton, and P. J. Campagnola, "Construction of a laser scanning microscope for multiphoton excited optical fabrication," Rev. Sci. Instrum. 74, 3474-3477 (2003).
[CrossRef]

Serbin, J.

Shear, J. B.

B. Kaehr, R. Allen, D. J. Javier, J. Currie, and J. B. Shear, "Guiding neuronal development with in situ microfabrication," Proc. Natl. Acad. Sci. U S A 101, 16104-16108 (2004).
[CrossRef] [PubMed]

Sridhar, M.

M. Sridhar, S. Basu, V. L. Scranton, and P. J. Campagnola, "Construction of a laser scanning microscope for multiphoton excited optical fabrication," Rev. Sci. Instrum. 74, 3474-3477 (2003).
[CrossRef]

Strickler, J. H.

Suhali, G.

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, "A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds," J Biomed Mater Res A 77, 396-405 (2006).
[PubMed]

Sun, H.-B.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Microfabrication: finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Sun, Y.

Takada, K.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Microfabrication: finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Tanaka, T.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Microfabrication: finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Teich, M. C.

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, "Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs," J. Phys. Chem. B 108, 11256 - 11258 (2004).
[CrossRef]

Toboada, R.

S. Basu, L. P. Cunningham, G. Pins, K. Bush, R. Toboada, A. R. Howell, J. Wang, and P. J. Campagnola, "Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: bioactivity and enzymatic degradation," Biomacromolecules 6, 1465-1474 (2005).
[CrossRef] [PubMed]

Tonnesen, M. G.

J. Gailit, C. Clarke, D. Newman, M. G. Tonnesen, M. W. Mosesson, and R. A. Clark, "Human fibroblasts bind directly to fibrinogen at RGD sites through integrin alpha(v)beta3," Exp Cell Res 232, 118-126 (1997).
[CrossRef] [PubMed]

Wang, J.

S. Basu, L. P. Cunningham, G. Pins, K. Bush, R. Toboada, A. R. Howell, J. Wang, and P. J. Campagnola, "Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: bioactivity and enzymatic degradation," Biomacromolecules 6, 1465-1474 (2005).
[CrossRef] [PubMed]

Webb, W. W.

Wolgemuth, C. W.

S. Basu, C. W. Wolgemuth, and P. J. Campagnola, "Measurement of normal and anomalous diffusion of dyes within protein structures fabricated via multi-photon excited crosslinking," Biomacromolecules 5, 2347-2357 (2004).
[CrossRef] [PubMed]

Yang, H.

Yu, T.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

Zhou, W.

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

Acta Biomaterialia (1)

A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, "Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices," Acta Biomaterialia 2, 267-275 (2006).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

S. A. Pruzinsky and P. V. Braun, "Fabrication and characterization of two-photon polymerized features in colloidal crystals," Adv. Funct. Mater. 15, 1995-2004 (2005).
[CrossRef]

Adv. Mater. (1)

W. Lee, S. A. Pruzinsky, and P. V. Braun, "Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals," Adv. Mater. 14, 271-274 (2002).
[CrossRef]

Biomacromolecules (3)

S. Basu, C. W. Wolgemuth, and P. J. Campagnola, "Measurement of normal and anomalous diffusion of dyes within protein structures fabricated via multi-photon excited crosslinking," Biomacromolecules 5, 2347-2357 (2004).
[CrossRef] [PubMed]

S. Basu and P. J. Campagnola, "Enzymatic activity of alkaline phosphatase inside protein and polymer structures fabricated via multi-photon excitation," Biomacromolecules 5, 572-579 (2004).
[CrossRef] [PubMed]

S. Basu, L. P. Cunningham, G. Pins, K. Bush, R. Toboada, A. R. Howell, J. Wang, and P. J. Campagnola, "Multi-photon excited fabrication of collagen matrices crosslinked by a modified benzophenone dimer: bioactivity and enzymatic degradation," Biomacromolecules 6, 1465-1474 (2005).
[CrossRef] [PubMed]

Exp Cell Res (1)

J. Gailit, C. Clarke, D. Newman, M. G. Tonnesen, M. W. Mosesson, and R. A. Clark, "Human fibroblasts bind directly to fibrinogen at RGD sites through integrin alpha(v)beta3," Exp Cell Res 232, 118-126 (1997).
[CrossRef] [PubMed]

J Biomed Mater Res (1)

S. Basu and P. J. Campagnola, "Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation," J Biomed Mater Res 71A, 359-368 (2004).
[CrossRef]

J Biomed Mater Res A (1)

Y. Lu, G. Mapili, G. Suhali, S. Chen, and K. Roy, "A digital micro-mirror device-based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds," J Biomed Mater Res A 77, 396-405 (2006).
[PubMed]

J Biomed Mater Res B Appl Biomater (1)

M. N. Cooke, J. P. Fisher, D. Dean, C. Rimnac, and A. G. Mikos, "Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth," J Biomed Mater Res B Appl Biomater 64B, 65-69 (2003).
[CrossRef]

J Biomed Opt (1)

A. Fujita, K. Fujita, O. Nakamura, T. Matsuda, and S. Kawata, "Control of cardiomyocyte orientation on a microscaffold fabricated by photopolymerization with laser beam interference," J Biomed Opt 11, 021015 (2006).
[CrossRef] [PubMed]

J. Biomed. Mat. Res. (1)

G. D. Pins, K. A. Bush, L. P. Cunningham, and P. J. Campagnola, "Multiphoton excited fabricated nano and micropatterned extracellular matrix proteins direct cellular morphology," J. Biomed. Mat. Res. 78A, 194-204 (2006).
[CrossRef]

J. Microelectromech. Syst. (1)

S. Maruo, K. Ikuta, and H. Korogi, "Force-controllable, optically driven micromachines fabricated by single-step two-photon micro stereolithography," J. Microelectromech. Syst. 12, 533-539 (2003).
[CrossRef]

J. Phys. Chem. B (1)

C. N. LaFratta, T. Baldacchini, R. A. Farrer, J. T. Fourkas, M. C. Teich, B. E. A. Saleh, and M. J. Naughton, "Replication of two-photon-polymerized structures with extremely high aspect ratios and large overhangs," J. Phys. Chem. B 108, 11256 - 11258 (2004).
[CrossRef]

Langmuir (1)

W.-G. Koh, A. Revzin, and M. V. Pishko, "Poly(ethylene glycol) Hydrogel microstructures encapsulating living cells," Langmuir 18, 2459-2462 (2002).
[CrossRef] [PubMed]

Macromolecules (1)

J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, "Reaction efficiencies for sub-micron multi-photon freeform fabrications of proteins and polymers with applications in sustained release," Macromolecules 33, 1514-1523 (2000).
[CrossRef]

Nature (1)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, "Microfabrication: finer features for functional microdevices," Nature 412, 697-698 (2001).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Proc. Natl. Acad. Sci. U S A (1)

B. Kaehr, R. Allen, D. J. Javier, J. Currie, and J. B. Shear, "Guiding neuronal development with in situ microfabrication," Proc. Natl. Acad. Sci. U S A 101, 16104-16108 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

M. Sridhar, S. Basu, V. L. Scranton, and P. J. Campagnola, "Construction of a laser scanning microscope for multiphoton excited optical fabrication," Rev. Sci. Instrum. 74, 3474-3477 (2003).
[CrossRef]

Science (1)

W. Zhou, S. M. Kuebler, K. L. Braun, T. Yu, J. K. Cammack, C. K. Ober, J. W. Perry, and S. R. Marder, "An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication," Science 296, 1106-1109 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Flow chart of the possible options to create 2 and 3 dimension structures using STL files and LabVIEW.

Fig. 2.
Fig. 2.

MPE fabrication of a “tunnel”. The four structures in (a) show representative solid renderings of the steps of the process of creating the 3D structure. The images in (b) and (c) are two different projections of the 3D rendering of the Rhodamine B labeled structure.

Fig. 3.
Fig. 3.

TPEF optical sections of L1210 cells in the MPE fabricated microflow device, where (a) and (b) are near the bottom and top of the structure, respectively.

Fig. 4.
Fig. 4.

3D dimensional cell-containment devices (a) is a high aspect ratio cylinder 60 microns tall with 1 micron thick walls MPE fabricated from BSA (b) Cylinder fabricated from crosslinked fibrinogen/BSA mixture is used to encompass primary neurons and fibroblasts. The inner scaffold is also fabricated from fibrinogen and the cells have migrated to this adhesive structure. Scale bar=50 microns.

Fig. 5.
Fig. 5.

A tissue engineering scaffolds fabricated from fibrinogen and BSA., where (a) show a 3D fluorescence rendering of the structure, and (b) shows a GFP expressing fibroblast adhered to the scaffold 4 hours post-plating. Additional fibroblasts are seen to migrate toward the scaffold. Scale bar=25 microns.

Fig. 6.
Fig. 6.

The fabrication process for the UCONN Oakleaf logo is shown where the CAD drawing, the TPE image, and 3d rendering are shown in the left, middle and right panels, respectively.

Metrics