Abstract

We present a single fiber reflectance confocal microscope with a two dimensional MEMS gimbaled scanner. Achieved lateral and axial resolutions are 0.82 µm and 13 µm, respectively. The field of view is 140×100 µm at 8 frames/second. Images and videos of cell phantoms and tissue are presented with sub-cellular resolution.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, Confocal Microscopy, (Academic Press, San Diego, Calif., 1990).
  2. T. Collier, A. Lacy, R. Richards-Kortum, A. Malpica, and M. Follen, "Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue," Acad. Radiol. 9, 504-512 (2002).
    [CrossRef] [PubMed]
  3. K. D. Carlson, I. Pavlova, T. Collier, M. Descour, M. Follen, and R. Richards-Kortum, "Confocal microscopy: Imaging cervical precancerous lesions," Gynecol. Oncol. 99, S84-S88 (2005).
    [CrossRef] [PubMed]
  4. A. F. Gmitro and D. Aziz, "Confocal microscopy through a fiber-optic imaging bundle," Opt. Lett. 18, 565-567 (1993).
    [CrossRef] [PubMed]
  5. C. P. Lin and R. H. Webb, "Fiber-coupled multiplexed confocal microscope," Opt. Lett. 25, 954-956 (2000).
    [CrossRef]
  6. K. B. Sung, R. Richards-Kortum, M. Follen, A. Malpica, C. Liang, and M. Descour, "Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo," Opt. Express 11, 3171-3181 (2003).
    [CrossRef] [PubMed]
  7. C. Boudoux, S. H. Yun, W. Y. Oh, W. M. White, N. V. Iftimia, M. Shishkov, B. E. Bouma, and G. J. Tearney, "Rapid wavelength-swept spectrally encoded confocal microscopy," Opt. Express 13, 8214-8221 (2005).
    [CrossRef] [PubMed]
  8. D. L. Dickensheets and G. S. Kino, "Micromachined scanning confocal optical microscope," Opt. Lett. 21, 764-766 (1996).
    [CrossRef] [PubMed]
  9. W. Piyawattanametha, H. Toshiyoshi, J. LaCosse, and M. C. Wu. "Surface-micromachined confocal scanning optical microscope," in Conference on Lasers and Electro-Optics (Optical Society of America, San Francisco, CA, 2000), pp. 447-448.
  10. M. O. Freeman. "Miniature high-fidelity displays using a biaxial MEMS scanning mirror," in SPIE MOEMS Display and Imaging Systems (SPIE, San Jose, CA, 2003), pp. 56-62.
  11. M. Kozhevnikov, R. Ryf, D. T. Neilson, P. Kolodner, C. A. Bolle, A. R. Papazian, J. Kim, and J. V. Gates, "Micromechanical optical crossconnect with 4-F relay imaging optics," IEEE Photonics Technol. Lett. 16, 275-277 (2004).
    [CrossRef]
  12. P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, and O. Solgaard, "Scalable optical cross-connect switch using micromachined mirrors," IEEE Photonics Technol. Lett. 12, 882-885 (2000).
    [CrossRef]
  13. S. Kwon, V. Milanovic, and L. P. Lee, "Vertical combdrive based 2-D gimbaled micromirrors with large static rotation by backside island isolation," IEEE J Quantum Electron. 10, 498-504 (2004).
    [CrossRef]
  14. D. Lee and O. Solgaard. "Two-axis gimbaled microscanner in double SOI layers actuated by self-aligned vertical electrostatic combdrive," in Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, (2004), pp. 352-355.
  15. D. L. Dickensheets and G. S. Kino, "Silicon-micromachined scanning confocal optical microscope," J MEMS 7, 38-47 (1998).
    [CrossRef]
  16. Y. Shao and D. L. Dickensheets. "MEMS three-dimensional scan mirror," in SPIE MOEMS Display and Imaging Systems II (SPIE, San Jose, CA, 2004), pp. 175-183.
  17. H. Ra, Y. Taguchi, D. Lee, W. Piyawattanametha, and O. Solgaard. "Two-dimensional MEMS scanner for dual-axes confocal in vivo microscopy," in Tech. Digest of IEEE International Conference on MEMS, (IEEE, Turkey, 2006), pp. 862-865.
  18. T. D. Wang, M. J. Mandella, C. H. Contag, and G. S. Kino, "Dual-axis confocal microscope for high-resolution in vivo imaging," Opt. Lett. 28, 414-416 (2003).
    [CrossRef] [PubMed]
  19. T. Xie, H. Xie, G. K. Fedder, and Y. Pan, "Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers," Appl. Opt. 42, 6422-6426 (2003).
    [CrossRef] [PubMed]
  20. H. Xie, Y. Pan, and G. K. Fedder, "Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror," Sensor Actuat.A-Phys. 103, 237-241 (2003).
    [CrossRef]
  21. S. Kwon and L. P. Lee, "Micromachined transmissive scanning confocal microscope," Opt. Lett. 29, 706-708 (2004).
    [CrossRef] [PubMed]
  22. T. Dabbs and M. Glass, "Fiber-optic confocal microscope: FOCON," Appl. Opt. 31, 3030-3035 (1992).
    [CrossRef] [PubMed]
  23. T. Wilson and A. R. Carlini, "Size of the detector in confocal imaging systems," Opt. Lett. 12, 227-229 (1987).
    [CrossRef] [PubMed]
  24. M. Gu, C. J. R. Sheppard, and X. Gan, "Image formation in a fiber-optical confocal scanning microscope," J Opt. Soc. Am. A 8, 1755-1761 (1991).
    [CrossRef]
  25. K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, "Realistic three-dimensional epithelial tissue phantoms for biomedical optics," J Biomed. Opt. 7, 148-156 (2002).
    [CrossRef] [PubMed]
  26. Squier and Wertz, "Structure and Function of Oral Mucosa," in Oral Mucosal Drug Delivery, M. Rathbone, ed. (Marcel Dekker, Inc., New York, 1996).
  27. C. J. Balas, G. C. Themelis, E. P. Prokopakis, I. Orfanudaki, E. Koumantakis, and E. S. Helidonis, "In vivo detection and staging of epithelial dysplasias and malignancies based on the quantitative assessment of acetic acid-tissue interaction kinetics," J Photochem. Photobiol. B 53, 153-157 (1999).
    [CrossRef]
  28. R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, "Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid," AM J Obstet. Gynecol., 1135-1139 (2000).
    [CrossRef] [PubMed]
  29. C. Liang, K.B. Sung, R. Richards-Kortum, and M. Descour, "Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal microscope," Appl. Opt. 41, 4603-4610 (2002)
    [CrossRef] [PubMed]
  30. M. Chidley, K. Carlson, R. Richards-Kortum, and M. Descour, "Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy," Appl. Opt. 45, 2545-2554 (2006).
    [CrossRef] [PubMed]

2006 (1)

2005 (2)

K. D. Carlson, I. Pavlova, T. Collier, M. Descour, M. Follen, and R. Richards-Kortum, "Confocal microscopy: Imaging cervical precancerous lesions," Gynecol. Oncol. 99, S84-S88 (2005).
[CrossRef] [PubMed]

C. Boudoux, S. H. Yun, W. Y. Oh, W. M. White, N. V. Iftimia, M. Shishkov, B. E. Bouma, and G. J. Tearney, "Rapid wavelength-swept spectrally encoded confocal microscopy," Opt. Express 13, 8214-8221 (2005).
[CrossRef] [PubMed]

2004 (3)

M. Kozhevnikov, R. Ryf, D. T. Neilson, P. Kolodner, C. A. Bolle, A. R. Papazian, J. Kim, and J. V. Gates, "Micromechanical optical crossconnect with 4-F relay imaging optics," IEEE Photonics Technol. Lett. 16, 275-277 (2004).
[CrossRef]

S. Kwon, V. Milanovic, and L. P. Lee, "Vertical combdrive based 2-D gimbaled micromirrors with large static rotation by backside island isolation," IEEE J Quantum Electron. 10, 498-504 (2004).
[CrossRef]

S. Kwon and L. P. Lee, "Micromachined transmissive scanning confocal microscope," Opt. Lett. 29, 706-708 (2004).
[CrossRef] [PubMed]

2003 (4)

2002 (3)

T. Collier, A. Lacy, R. Richards-Kortum, A. Malpica, and M. Follen, "Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue," Acad. Radiol. 9, 504-512 (2002).
[CrossRef] [PubMed]

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, "Realistic three-dimensional epithelial tissue phantoms for biomedical optics," J Biomed. Opt. 7, 148-156 (2002).
[CrossRef] [PubMed]

C. Liang, K.B. Sung, R. Richards-Kortum, and M. Descour, "Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal microscope," Appl. Opt. 41, 4603-4610 (2002)
[CrossRef] [PubMed]

2000 (3)

R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, "Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid," AM J Obstet. Gynecol., 1135-1139 (2000).
[CrossRef] [PubMed]

C. P. Lin and R. H. Webb, "Fiber-coupled multiplexed confocal microscope," Opt. Lett. 25, 954-956 (2000).
[CrossRef]

P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, and O. Solgaard, "Scalable optical cross-connect switch using micromachined mirrors," IEEE Photonics Technol. Lett. 12, 882-885 (2000).
[CrossRef]

1999 (1)

C. J. Balas, G. C. Themelis, E. P. Prokopakis, I. Orfanudaki, E. Koumantakis, and E. S. Helidonis, "In vivo detection and staging of epithelial dysplasias and malignancies based on the quantitative assessment of acetic acid-tissue interaction kinetics," J Photochem. Photobiol. B 53, 153-157 (1999).
[CrossRef]

1998 (1)

D. L. Dickensheets and G. S. Kino, "Silicon-micromachined scanning confocal optical microscope," J MEMS 7, 38-47 (1998).
[CrossRef]

1996 (1)

1993 (1)

1992 (1)

1991 (1)

M. Gu, C. J. R. Sheppard, and X. Gan, "Image formation in a fiber-optical confocal scanning microscope," J Opt. Soc. Am. A 8, 1755-1761 (1991).
[CrossRef]

1987 (1)

Aziz, D.

Balas, C. J.

C. J. Balas, G. C. Themelis, E. P. Prokopakis, I. Orfanudaki, E. Koumantakis, and E. S. Helidonis, "In vivo detection and staging of epithelial dysplasias and malignancies based on the quantitative assessment of acetic acid-tissue interaction kinetics," J Photochem. Photobiol. B 53, 153-157 (1999).
[CrossRef]

Bolle, C. A.

M. Kozhevnikov, R. Ryf, D. T. Neilson, P. Kolodner, C. A. Bolle, A. R. Papazian, J. Kim, and J. V. Gates, "Micromechanical optical crossconnect with 4-F relay imaging optics," IEEE Photonics Technol. Lett. 16, 275-277 (2004).
[CrossRef]

Boudoux, C.

Bouma, B. E.

Brookner, C.

R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, "Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid," AM J Obstet. Gynecol., 1135-1139 (2000).
[CrossRef] [PubMed]

Carlini, A. R.

Carlson, K.

Carlson, K. D.

K. D. Carlson, I. Pavlova, T. Collier, M. Descour, M. Follen, and R. Richards-Kortum, "Confocal microscopy: Imaging cervical precancerous lesions," Gynecol. Oncol. 99, S84-S88 (2005).
[CrossRef] [PubMed]

Chidley, M.

Collier, T.

K. D. Carlson, I. Pavlova, T. Collier, M. Descour, M. Follen, and R. Richards-Kortum, "Confocal microscopy: Imaging cervical precancerous lesions," Gynecol. Oncol. 99, S84-S88 (2005).
[CrossRef] [PubMed]

T. Collier, A. Lacy, R. Richards-Kortum, A. Malpica, and M. Follen, "Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue," Acad. Radiol. 9, 504-512 (2002).
[CrossRef] [PubMed]

R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, "Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid," AM J Obstet. Gynecol., 1135-1139 (2000).
[CrossRef] [PubMed]

Contag, C. H.

Dabbs, T.

Descour, M.

Dickensheets, D. L.

D. L. Dickensheets and G. S. Kino, "Silicon-micromachined scanning confocal optical microscope," J MEMS 7, 38-47 (1998).
[CrossRef]

D. L. Dickensheets and G. S. Kino, "Micromachined scanning confocal optical microscope," Opt. Lett. 21, 764-766 (1996).
[CrossRef] [PubMed]

Drezek, R.

R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, "Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid," AM J Obstet. Gynecol., 1135-1139 (2000).
[CrossRef] [PubMed]

Fedder, G. K.

H. Xie, Y. Pan, and G. K. Fedder, "Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror," Sensor Actuat.A-Phys. 103, 237-241 (2003).
[CrossRef]

T. Xie, H. Xie, G. K. Fedder, and Y. Pan, "Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers," Appl. Opt. 42, 6422-6426 (2003).
[CrossRef] [PubMed]

Follen, M.

K. D. Carlson, I. Pavlova, T. Collier, M. Descour, M. Follen, and R. Richards-Kortum, "Confocal microscopy: Imaging cervical precancerous lesions," Gynecol. Oncol. 99, S84-S88 (2005).
[CrossRef] [PubMed]

K. B. Sung, R. Richards-Kortum, M. Follen, A. Malpica, C. Liang, and M. Descour, "Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo," Opt. Express 11, 3171-3181 (2003).
[CrossRef] [PubMed]

T. Collier, A. Lacy, R. Richards-Kortum, A. Malpica, and M. Follen, "Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue," Acad. Radiol. 9, 504-512 (2002).
[CrossRef] [PubMed]

Galvan, J.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, "Realistic three-dimensional epithelial tissue phantoms for biomedical optics," J Biomed. Opt. 7, 148-156 (2002).
[CrossRef] [PubMed]

Gan, X.

M. Gu, C. J. R. Sheppard, and X. Gan, "Image formation in a fiber-optical confocal scanning microscope," J Opt. Soc. Am. A 8, 1755-1761 (1991).
[CrossRef]

Gates, J. V.

M. Kozhevnikov, R. Ryf, D. T. Neilson, P. Kolodner, C. A. Bolle, A. R. Papazian, J. Kim, and J. V. Gates, "Micromechanical optical crossconnect with 4-F relay imaging optics," IEEE Photonics Technol. Lett. 16, 275-277 (2004).
[CrossRef]

Glass, M.

Gmitro, A. F.

Gu, M.

M. Gu, C. J. R. Sheppard, and X. Gan, "Image formation in a fiber-optical confocal scanning microscope," J Opt. Soc. Am. A 8, 1755-1761 (1991).
[CrossRef]

Hagelin, P. M.

P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, and O. Solgaard, "Scalable optical cross-connect switch using micromachined mirrors," IEEE Photonics Technol. Lett. 12, 882-885 (2000).
[CrossRef]

Helidonis, E. S.

C. J. Balas, G. C. Themelis, E. P. Prokopakis, I. Orfanudaki, E. Koumantakis, and E. S. Helidonis, "In vivo detection and staging of epithelial dysplasias and malignancies based on the quantitative assessment of acetic acid-tissue interaction kinetics," J Photochem. Photobiol. B 53, 153-157 (1999).
[CrossRef]

Heritage, J. P.

P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, and O. Solgaard, "Scalable optical cross-connect switch using micromachined mirrors," IEEE Photonics Technol. Lett. 12, 882-885 (2000).
[CrossRef]

Iftimia, N. V.

Kim, J.

M. Kozhevnikov, R. Ryf, D. T. Neilson, P. Kolodner, C. A. Bolle, A. R. Papazian, J. Kim, and J. V. Gates, "Micromechanical optical crossconnect with 4-F relay imaging optics," IEEE Photonics Technol. Lett. 16, 275-277 (2004).
[CrossRef]

Kino, G. S.

Kolodner, P.

M. Kozhevnikov, R. Ryf, D. T. Neilson, P. Kolodner, C. A. Bolle, A. R. Papazian, J. Kim, and J. V. Gates, "Micromechanical optical crossconnect with 4-F relay imaging optics," IEEE Photonics Technol. Lett. 16, 275-277 (2004).
[CrossRef]

Koumantakis, E.

C. J. Balas, G. C. Themelis, E. P. Prokopakis, I. Orfanudaki, E. Koumantakis, and E. S. Helidonis, "In vivo detection and staging of epithelial dysplasias and malignancies based on the quantitative assessment of acetic acid-tissue interaction kinetics," J Photochem. Photobiol. B 53, 153-157 (1999).
[CrossRef]

Kozhevnikov, M.

M. Kozhevnikov, R. Ryf, D. T. Neilson, P. Kolodner, C. A. Bolle, A. R. Papazian, J. Kim, and J. V. Gates, "Micromechanical optical crossconnect with 4-F relay imaging optics," IEEE Photonics Technol. Lett. 16, 275-277 (2004).
[CrossRef]

Krishnamoorthy, U.

P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, and O. Solgaard, "Scalable optical cross-connect switch using micromachined mirrors," IEEE Photonics Technol. Lett. 12, 882-885 (2000).
[CrossRef]

Kwon, S.

S. Kwon, V. Milanovic, and L. P. Lee, "Vertical combdrive based 2-D gimbaled micromirrors with large static rotation by backside island isolation," IEEE J Quantum Electron. 10, 498-504 (2004).
[CrossRef]

S. Kwon and L. P. Lee, "Micromachined transmissive scanning confocal microscope," Opt. Lett. 29, 706-708 (2004).
[CrossRef] [PubMed]

Lacy, A.

T. Collier, A. Lacy, R. Richards-Kortum, A. Malpica, and M. Follen, "Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue," Acad. Radiol. 9, 504-512 (2002).
[CrossRef] [PubMed]

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, "Realistic three-dimensional epithelial tissue phantoms for biomedical optics," J Biomed. Opt. 7, 148-156 (2002).
[CrossRef] [PubMed]

Lee, L. P.

S. Kwon, V. Milanovic, and L. P. Lee, "Vertical combdrive based 2-D gimbaled micromirrors with large static rotation by backside island isolation," IEEE J Quantum Electron. 10, 498-504 (2004).
[CrossRef]

S. Kwon and L. P. Lee, "Micromachined transmissive scanning confocal microscope," Opt. Lett. 29, 706-708 (2004).
[CrossRef] [PubMed]

Liang, C.

Lin, C. P.

Lotan, R.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, "Realistic three-dimensional epithelial tissue phantoms for biomedical optics," J Biomed. Opt. 7, 148-156 (2002).
[CrossRef] [PubMed]

R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, "Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid," AM J Obstet. Gynecol., 1135-1139 (2000).
[CrossRef] [PubMed]

Malpica, A.

K. B. Sung, R. Richards-Kortum, M. Follen, A. Malpica, C. Liang, and M. Descour, "Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo," Opt. Express 11, 3171-3181 (2003).
[CrossRef] [PubMed]

T. Collier, A. Lacy, R. Richards-Kortum, A. Malpica, and M. Follen, "Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue," Acad. Radiol. 9, 504-512 (2002).
[CrossRef] [PubMed]

R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, "Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid," AM J Obstet. Gynecol., 1135-1139 (2000).
[CrossRef] [PubMed]

Mandella, M. J.

Milanovic, V.

S. Kwon, V. Milanovic, and L. P. Lee, "Vertical combdrive based 2-D gimbaled micromirrors with large static rotation by backside island isolation," IEEE J Quantum Electron. 10, 498-504 (2004).
[CrossRef]

Myakov, A.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, "Realistic three-dimensional epithelial tissue phantoms for biomedical optics," J Biomed. Opt. 7, 148-156 (2002).
[CrossRef] [PubMed]

Neilson, D. T.

M. Kozhevnikov, R. Ryf, D. T. Neilson, P. Kolodner, C. A. Bolle, A. R. Papazian, J. Kim, and J. V. Gates, "Micromechanical optical crossconnect with 4-F relay imaging optics," IEEE Photonics Technol. Lett. 16, 275-277 (2004).
[CrossRef]

Oh, W. Y.

Orfanudaki, I.

C. J. Balas, G. C. Themelis, E. P. Prokopakis, I. Orfanudaki, E. Koumantakis, and E. S. Helidonis, "In vivo detection and staging of epithelial dysplasias and malignancies based on the quantitative assessment of acetic acid-tissue interaction kinetics," J Photochem. Photobiol. B 53, 153-157 (1999).
[CrossRef]

Pan, Y.

H. Xie, Y. Pan, and G. K. Fedder, "Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror," Sensor Actuat.A-Phys. 103, 237-241 (2003).
[CrossRef]

T. Xie, H. Xie, G. K. Fedder, and Y. Pan, "Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers," Appl. Opt. 42, 6422-6426 (2003).
[CrossRef] [PubMed]

Papazian, A. R.

M. Kozhevnikov, R. Ryf, D. T. Neilson, P. Kolodner, C. A. Bolle, A. R. Papazian, J. Kim, and J. V. Gates, "Micromechanical optical crossconnect with 4-F relay imaging optics," IEEE Photonics Technol. Lett. 16, 275-277 (2004).
[CrossRef]

Pavlova, I.

K. D. Carlson, I. Pavlova, T. Collier, M. Descour, M. Follen, and R. Richards-Kortum, "Confocal microscopy: Imaging cervical precancerous lesions," Gynecol. Oncol. 99, S84-S88 (2005).
[CrossRef] [PubMed]

Prokopakis, E. P.

C. J. Balas, G. C. Themelis, E. P. Prokopakis, I. Orfanudaki, E. Koumantakis, and E. S. Helidonis, "In vivo detection and staging of epithelial dysplasias and malignancies based on the quantitative assessment of acetic acid-tissue interaction kinetics," J Photochem. Photobiol. B 53, 153-157 (1999).
[CrossRef]

Richards-Kortum, R.

M. Chidley, K. Carlson, R. Richards-Kortum, and M. Descour, "Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy," Appl. Opt. 45, 2545-2554 (2006).
[CrossRef] [PubMed]

K. D. Carlson, I. Pavlova, T. Collier, M. Descour, M. Follen, and R. Richards-Kortum, "Confocal microscopy: Imaging cervical precancerous lesions," Gynecol. Oncol. 99, S84-S88 (2005).
[CrossRef] [PubMed]

K. B. Sung, R. Richards-Kortum, M. Follen, A. Malpica, C. Liang, and M. Descour, "Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo," Opt. Express 11, 3171-3181 (2003).
[CrossRef] [PubMed]

T. Collier, A. Lacy, R. Richards-Kortum, A. Malpica, and M. Follen, "Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue," Acad. Radiol. 9, 504-512 (2002).
[CrossRef] [PubMed]

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, "Realistic three-dimensional epithelial tissue phantoms for biomedical optics," J Biomed. Opt. 7, 148-156 (2002).
[CrossRef] [PubMed]

C. Liang, K.B. Sung, R. Richards-Kortum, and M. Descour, "Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal microscope," Appl. Opt. 41, 4603-4610 (2002)
[CrossRef] [PubMed]

R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, "Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid," AM J Obstet. Gynecol., 1135-1139 (2000).
[CrossRef] [PubMed]

Ryf, R.

M. Kozhevnikov, R. Ryf, D. T. Neilson, P. Kolodner, C. A. Bolle, A. R. Papazian, J. Kim, and J. V. Gates, "Micromechanical optical crossconnect with 4-F relay imaging optics," IEEE Photonics Technol. Lett. 16, 275-277 (2004).
[CrossRef]

Sheppard, C. J. R.

M. Gu, C. J. R. Sheppard, and X. Gan, "Image formation in a fiber-optical confocal scanning microscope," J Opt. Soc. Am. A 8, 1755-1761 (1991).
[CrossRef]

Shishkov, M.

Sokolov, K.

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, "Realistic three-dimensional epithelial tissue phantoms for biomedical optics," J Biomed. Opt. 7, 148-156 (2002).
[CrossRef] [PubMed]

Solgaard, O.

P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, and O. Solgaard, "Scalable optical cross-connect switch using micromachined mirrors," IEEE Photonics Technol. Lett. 12, 882-885 (2000).
[CrossRef]

Sung, K. B.

Sung, K.B.

Tearney, G. J.

Themelis, G. C.

C. J. Balas, G. C. Themelis, E. P. Prokopakis, I. Orfanudaki, E. Koumantakis, and E. S. Helidonis, "In vivo detection and staging of epithelial dysplasias and malignancies based on the quantitative assessment of acetic acid-tissue interaction kinetics," J Photochem. Photobiol. B 53, 153-157 (1999).
[CrossRef]

Wang, T. D.

Webb, R. H.

White, W. M.

Wilson, T.

Xie, H.

H. Xie, Y. Pan, and G. K. Fedder, "Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror," Sensor Actuat.A-Phys. 103, 237-241 (2003).
[CrossRef]

T. Xie, H. Xie, G. K. Fedder, and Y. Pan, "Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers," Appl. Opt. 42, 6422-6426 (2003).
[CrossRef] [PubMed]

Xie, T.

Yun, S. H.

A-Phys. (1)

H. Xie, Y. Pan, and G. K. Fedder, "Endoscopic optical coherence tomographic imaging with a CMOS-MEMS micromirror," Sensor Actuat.A-Phys. 103, 237-241 (2003).
[CrossRef]

Acad. Radiol. (1)

T. Collier, A. Lacy, R. Richards-Kortum, A. Malpica, and M. Follen, "Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue," Acad. Radiol. 9, 504-512 (2002).
[CrossRef] [PubMed]

AM J Obstet. Gynecol. (1)

R. Drezek, T. Collier, C. Brookner, A. Malpica, R. Lotan, and R. Richards-Kortum, "Laser scanning confocal microscopy of cervical tissue before and after application of acetic acid," AM J Obstet. Gynecol., 1135-1139 (2000).
[CrossRef] [PubMed]

Appl. Opt. (4)

Gynecol. Oncol. (1)

K. D. Carlson, I. Pavlova, T. Collier, M. Descour, M. Follen, and R. Richards-Kortum, "Confocal microscopy: Imaging cervical precancerous lesions," Gynecol. Oncol. 99, S84-S88 (2005).
[CrossRef] [PubMed]

IEEE J Quantum Electron. (1)

S. Kwon, V. Milanovic, and L. P. Lee, "Vertical combdrive based 2-D gimbaled micromirrors with large static rotation by backside island isolation," IEEE J Quantum Electron. 10, 498-504 (2004).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

M. Kozhevnikov, R. Ryf, D. T. Neilson, P. Kolodner, C. A. Bolle, A. R. Papazian, J. Kim, and J. V. Gates, "Micromechanical optical crossconnect with 4-F relay imaging optics," IEEE Photonics Technol. Lett. 16, 275-277 (2004).
[CrossRef]

P. M. Hagelin, U. Krishnamoorthy, J. P. Heritage, and O. Solgaard, "Scalable optical cross-connect switch using micromachined mirrors," IEEE Photonics Technol. Lett. 12, 882-885 (2000).
[CrossRef]

J Biomed. Opt. (1)

K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, "Realistic three-dimensional epithelial tissue phantoms for biomedical optics," J Biomed. Opt. 7, 148-156 (2002).
[CrossRef] [PubMed]

J MEMS (1)

D. L. Dickensheets and G. S. Kino, "Silicon-micromachined scanning confocal optical microscope," J MEMS 7, 38-47 (1998).
[CrossRef]

J Opt. Soc. Am. A (1)

M. Gu, C. J. R. Sheppard, and X. Gan, "Image formation in a fiber-optical confocal scanning microscope," J Opt. Soc. Am. A 8, 1755-1761 (1991).
[CrossRef]

J Photochem. Photobiol. B (1)

C. J. Balas, G. C. Themelis, E. P. Prokopakis, I. Orfanudaki, E. Koumantakis, and E. S. Helidonis, "In vivo detection and staging of epithelial dysplasias and malignancies based on the quantitative assessment of acetic acid-tissue interaction kinetics," J Photochem. Photobiol. B 53, 153-157 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (6)

Other (7)

Squier and Wertz, "Structure and Function of Oral Mucosa," in Oral Mucosal Drug Delivery, M. Rathbone, ed. (Marcel Dekker, Inc., New York, 1996).

T. Wilson, Confocal Microscopy, (Academic Press, San Diego, Calif., 1990).

Y. Shao and D. L. Dickensheets. "MEMS three-dimensional scan mirror," in SPIE MOEMS Display and Imaging Systems II (SPIE, San Jose, CA, 2004), pp. 175-183.

H. Ra, Y. Taguchi, D. Lee, W. Piyawattanametha, and O. Solgaard. "Two-dimensional MEMS scanner for dual-axes confocal in vivo microscopy," in Tech. Digest of IEEE International Conference on MEMS, (IEEE, Turkey, 2006), pp. 862-865.

D. Lee and O. Solgaard. "Two-axis gimbaled microscanner in double SOI layers actuated by self-aligned vertical electrostatic combdrive," in Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, (2004), pp. 352-355.

W. Piyawattanametha, H. Toshiyoshi, J. LaCosse, and M. C. Wu. "Surface-micromachined confocal scanning optical microscope," in Conference on Lasers and Electro-Optics (Optical Society of America, San Francisco, CA, 2000), pp. 447-448.

M. O. Freeman. "Miniature high-fidelity displays using a biaxial MEMS scanning mirror," in SPIE MOEMS Display and Imaging Systems (SPIE, San Jose, CA, 2003), pp. 56-62.

Supplementary Material (3)

» Media 1: MOV (798 KB)     
» Media 2: MOV (752 KB)     
» Media 3: MOV (707 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of SFCM with microscanner. LD, laser diode; SM, single-mode; PM, polarization-maintaining; MM, multi-mode; PBS, polarizing beam splitter; APD, avalanche photo-diode.

Fig. 2.
Fig. 2.

Optical image of microscanner showing 500 µm x 500 µm active area of mirror and comb teeth to drive scanning in the horizontal and vertical directions. Scale bar 100 µm.

Fig. 3.
Fig. 3.

(798 KB) Video obtained at 8 frames/second of USAF resolution test target translated laterally in object plane of SFCM. The smallest elements in this frame (USAF Group 7 Element 6) are 2.2 µm in width. Field of view is 140 µm×100 µm.

Fig. 4.
Fig. 4.

Line profile or intensity distribution of an edge of a Group 7 Element 2 edge taken from an unsaturated image of a USAF resolution test target. The 10–90% rise distance is measured to be 0.82 µm.

Fig. 5.
Fig. 5.

Normalized signal as a function of axial position, resulting in a SFCM FWHM axial resolution of 13 µm.

Fig. 6.
Fig. 6.

Tissue phantom containing SiHa cervical cancer cells and collagen. (a) Image obtained using a commercial reflectance confocal microscope at 830 nm. Field of view: 500 µm×500 µm. (b) (753 KB) Video obtained at 8 frames/second using SFCM. Field of view: 140 µm×100 µm. Inset in (a) demonstrates relative field of view of (b); however, it does not necessarily represent the specific image region of (b). Scale bars: 50 µm.

Fig. 7.
Fig. 7.

(707 KB) SFCM video obtained at 8 frames/second of oral porcine tissue after application of vinegar. Single arrows identify nuclei, double arrows identify cell borders. Scale bar: 50 µm.

Metrics