Abstract

We demonstrate improved fabrication precision and provide the first spectral characterization of Woodpile-type photonic crystal templates formed by one-dimensional diffractive optical elements. The three-dimensional periodic structures were produced in thick resist by sequential exposures of two orthogonal diffractive optical elements with an argon-ion laser. The observed crystal motif is shown to closely match the isointensity surfaces predicted by the interfering diffracted beams. Nearinfrared spectroscopic observations reveal the presence of both low and high energy photonic stopbands that correspond with theoretical predictions in several crystal directions. Numerous high-energy stop bands are further reported along very narrow crystallographic angles that attest to the high periodicity and uniformity of the crystal motif through the full resist thickness and over the large sample area. The optical characterization demonstrates the precise control and facile means of diffractive-opticalelement based holographic lithography in fabricating large-area three-dimensional photonic crystal templates, defining a promising medium for infiltration with high-refractive-index materials to create photonic bandgap devices.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lin, J. Flemming, D. Hetherington, B. Smith, R. Biswas, K. Hot, M. Sigalas, W. Zubrycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251-253 (1998).
    [CrossRef]
  2. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths," Science 289, 604-606 (2000).
    [CrossRef] [PubMed]
  3. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
    [CrossRef] [PubMed]
  4. N. Tétreault, G. von Freymann, G. A. Ozin, "New route to three-dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates," Adv. Mater. 18, 457-460 (2006).
    [CrossRef]
  5. S. Shoji and S. Kawata, "Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin," Appl. Phys. Lett. 76, 2668-2670 (2000).
    [CrossRef]
  6. I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, "Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography," Appl. Phys Lett. 82, 1667-1669 (2003).
    [CrossRef]
  7. S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS 101, 12429 -12434 (2004).
    [CrossRef]
  8. Y. Lin, P. R. Herman and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117-071119 (2005).
    [CrossRef]
  9. D. Chanda, L. Abolghasemi, and P. Herman, "Diffractive optical elements based fabrication of photonic crystals," in Conference on Lasers and Electro-Optics 2006 Technical Digest (Optical Society of America, Washington, DC, 2006), CMV7.
  10. K. M. Ho, C. T. Chen, C. M. Soukoulis, R. Biswas, M. Sigalas, "Photonic Band Gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
    [CrossRef]
  11. O. Toader, and S. John, Ph D thesis, University of Toronto, (2003).
  12. C. T. Chan, S. Datta, K. M. Ho and C. M. Soukoulis, "A7 structure: A family of photonic crystals," Phys. Rev. B 50, 1988-1991 (1994).
    [CrossRef]
  13. D. Chanda, L. Abolghasemi, and P. Herman, "Numerical band calculation of holographically formed periodic structures with irregular motif," in Photonic Crystal Materials and Devices IV, A. Adibi, S.-Yu Lin, and A. Scherer, eds., Proc. SPIE 6128, 311-316 (2006).
  14. R. C. Rumpf and E. G. Johnson, "Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography," J. Opt. Soc. Am. A 21, 1703-1713 (2004).
    [CrossRef]
  15. M. Deubel, G.  von Freymann, M.  Wegener, S. Pereira, K.  Busch, M.  Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3,444-447 (2004).
    [CrossRef] [PubMed]

2006 (1)

N. Tétreault, G. von Freymann, G. A. Ozin, "New route to three-dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates," Adv. Mater. 18, 457-460 (2006).
[CrossRef]

2005 (1)

Y. Lin, P. R. Herman and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117-071119 (2005).
[CrossRef]

2004 (3)

M. Deubel, G.  von Freymann, M.  Wegener, S. Pereira, K.  Busch, M.  Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3,444-447 (2004).
[CrossRef] [PubMed]

R. C. Rumpf and E. G. Johnson, "Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography," J. Opt. Soc. Am. A 21, 1703-1713 (2004).
[CrossRef]

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS 101, 12429 -12434 (2004).
[CrossRef]

2003 (1)

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, "Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography," Appl. Phys Lett. 82, 1667-1669 (2003).
[CrossRef]

2000 (3)

S. Shoji and S. Kawata, "Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin," Appl. Phys. Lett. 76, 2668-2670 (2000).
[CrossRef]

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

1998 (1)

S. Lin, J. Flemming, D. Hetherington, B. Smith, R. Biswas, K. Hot, M. Sigalas, W. Zubrycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251-253 (1998).
[CrossRef]

1994 (2)

K. M. Ho, C. T. Chen, C. M. Soukoulis, R. Biswas, M. Sigalas, "Photonic Band Gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

C. T. Chan, S. Datta, K. M. Ho and C. M. Soukoulis, "A7 structure: A family of photonic crystals," Phys. Rev. B 50, 1988-1991 (1994).
[CrossRef]

Biswas, R.

S. Lin, J. Flemming, D. Hetherington, B. Smith, R. Biswas, K. Hot, M. Sigalas, W. Zubrycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251-253 (1998).
[CrossRef]

K. M. Ho, C. T. Chen, C. M. Soukoulis, R. Biswas, M. Sigalas, "Photonic Band Gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Braun, P. V.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS 101, 12429 -12434 (2004).
[CrossRef]

Bur, J.

S. Lin, J. Flemming, D. Hetherington, B. Smith, R. Biswas, K. Hot, M. Sigalas, W. Zubrycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251-253 (1998).
[CrossRef]

Busch, K.

M. Deubel, G.  von Freymann, M.  Wegener, S. Pereira, K.  Busch, M.  Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3,444-447 (2004).
[CrossRef] [PubMed]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Chan, C. T.

C. T. Chan, S. Datta, K. M. Ho and C. M. Soukoulis, "A7 structure: A family of photonic crystals," Phys. Rev. B 50, 1988-1991 (1994).
[CrossRef]

Chen, C. T.

K. M. Ho, C. T. Chen, C. M. Soukoulis, R. Biswas, M. Sigalas, "Photonic Band Gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Chutinan, A.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Cirelli, R.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS 101, 12429 -12434 (2004).
[CrossRef]

Crespi, V. H.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, "Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography," Appl. Phys Lett. 82, 1667-1669 (2003).
[CrossRef]

Darmawikarta, K.

Y. Lin, P. R. Herman and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117-071119 (2005).
[CrossRef]

Datta, S.

C. T. Chan, S. Datta, K. M. Ho and C. M. Soukoulis, "A7 structure: A family of photonic crystals," Phys. Rev. B 50, 1988-1991 (1994).
[CrossRef]

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Deubel, M.

M. Deubel, G.  von Freymann, M.  Wegener, S. Pereira, K.  Busch, M.  Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3,444-447 (2004).
[CrossRef] [PubMed]

Divliansky, I.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, "Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography," Appl. Phys Lett. 82, 1667-1669 (2003).
[CrossRef]

Flemming, J.

S. Lin, J. Flemming, D. Hetherington, B. Smith, R. Biswas, K. Hot, M. Sigalas, W. Zubrycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251-253 (1998).
[CrossRef]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Heitzman, C. E.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS 101, 12429 -12434 (2004).
[CrossRef]

Herman, P. R.

Y. Lin, P. R. Herman and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117-071119 (2005).
[CrossRef]

Hetherington, D.

S. Lin, J. Flemming, D. Hetherington, B. Smith, R. Biswas, K. Hot, M. Sigalas, W. Zubrycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251-253 (1998).
[CrossRef]

Ho, K. M.

C. T. Chan, S. Datta, K. M. Ho and C. M. Soukoulis, "A7 structure: A family of photonic crystals," Phys. Rev. B 50, 1988-1991 (1994).
[CrossRef]

K. M. Ho, C. T. Chen, C. M. Soukoulis, R. Biswas, M. Sigalas, "Photonic Band Gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Holliday, K. S.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, "Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography," Appl. Phys Lett. 82, 1667-1669 (2003).
[CrossRef]

Hot, K.

S. Lin, J. Flemming, D. Hetherington, B. Smith, R. Biswas, K. Hot, M. Sigalas, W. Zubrycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251-253 (1998).
[CrossRef]

Jeon, S.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS 101, 12429 -12434 (2004).
[CrossRef]

Johnson, E. G.

Kawata, S.

S. Shoji and S. Kawata, "Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin," Appl. Phys. Lett. 76, 2668-2670 (2000).
[CrossRef]

Kenis, P. J. A.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS 101, 12429 -12434 (2004).
[CrossRef]

Kurtz, S.

S. Lin, J. Flemming, D. Hetherington, B. Smith, R. Biswas, K. Hot, M. Sigalas, W. Zubrycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251-253 (1998).
[CrossRef]

Lin, S.

S. Lin, J. Flemming, D. Hetherington, B. Smith, R. Biswas, K. Hot, M. Sigalas, W. Zubrycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251-253 (1998).
[CrossRef]

Lin, Y.

Y. Lin, P. R. Herman and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117-071119 (2005).
[CrossRef]

Mayer, T. S.

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, "Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography," Appl. Phys Lett. 82, 1667-1669 (2003).
[CrossRef]

Noda, S.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Ozin, G. A.

N. Tétreault, G. von Freymann, G. A. Ozin, "New route to three-dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates," Adv. Mater. 18, 457-460 (2006).
[CrossRef]

Park, J.-U.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS 101, 12429 -12434 (2004).
[CrossRef]

Pereira, S.

M. Deubel, G.  von Freymann, M.  Wegener, S. Pereira, K.  Busch, M.  Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3,444-447 (2004).
[CrossRef] [PubMed]

Rogers, J. A.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS 101, 12429 -12434 (2004).
[CrossRef]

Rumpf, R. C.

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

Shoji, S.

S. Shoji and S. Kawata, "Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin," Appl. Phys. Lett. 76, 2668-2670 (2000).
[CrossRef]

Sigalas, M.

S. Lin, J. Flemming, D. Hetherington, B. Smith, R. Biswas, K. Hot, M. Sigalas, W. Zubrycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251-253 (1998).
[CrossRef]

K. M. Ho, C. T. Chen, C. M. Soukoulis, R. Biswas, M. Sigalas, "Photonic Band Gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Smith, B.

S. Lin, J. Flemming, D. Hetherington, B. Smith, R. Biswas, K. Hot, M. Sigalas, W. Zubrycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251-253 (1998).
[CrossRef]

Soukoulis, C. M.

C. T. Chan, S. Datta, K. M. Ho and C. M. Soukoulis, "A7 structure: A family of photonic crystals," Phys. Rev. B 50, 1988-1991 (1994).
[CrossRef]

K. M. Ho, C. T. Chen, C. M. Soukoulis, R. Biswas, M. Sigalas, "Photonic Band Gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Soukoulis, M.

M. Deubel, G.  von Freymann, M.  Wegener, S. Pereira, K.  Busch, M.  Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3,444-447 (2004).
[CrossRef] [PubMed]

Tétreault, N.

N. Tétreault, G. von Freymann, G. A. Ozin, "New route to three-dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates," Adv. Mater. 18, 457-460 (2006).
[CrossRef]

Tomoda, K.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Turberfield, A. J.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

von Freymann, G.

N. Tétreault, G. von Freymann, G. A. Ozin, "New route to three-dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates," Adv. Mater. 18, 457-460 (2006).
[CrossRef]

von Freymann, G.

M. Deubel, G.  von Freymann, M.  Wegener, S. Pereira, K.  Busch, M.  Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3,444-447 (2004).
[CrossRef] [PubMed]

Wegener, M.

M. Deubel, G.  von Freymann, M.  Wegener, S. Pereira, K.  Busch, M.  Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3,444-447 (2004).
[CrossRef] [PubMed]

Yamamoto, N.

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Yang, S.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS 101, 12429 -12434 (2004).
[CrossRef]

Zubrycki, W.

S. Lin, J. Flemming, D. Hetherington, B. Smith, R. Biswas, K. Hot, M. Sigalas, W. Zubrycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251-253 (1998).
[CrossRef]

Adv. Mater. (1)

N. Tétreault, G. von Freymann, G. A. Ozin, "New route to three-dimensional Photonic Bandgap Materials: Silicon Double Inversion of Polymer Templates," Adv. Mater. 18, 457-460 (2006).
[CrossRef]

Appl. Phys Lett. (1)

I. Divliansky, T. S. Mayer, K. S. Holliday, and V. H. Crespi, "Fabrication of three-dimensional polymer photonic crystal structures using single diffraction element interference lithography," Appl. Phys Lett. 82, 1667-1669 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Lin, P. R. Herman and K. Darmawikarta, "Design and holographic fabrication of tetragonal and cubic photonic crystals with phase mask: toward the mass-production of three-dimensional photonic crystals," Appl. Phys. Lett. 86, 071117-071119 (2005).
[CrossRef]

S. Shoji and S. Kawata, "Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin," Appl. Phys. Lett. 76, 2668-2670 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Mater. (1)

M. Deubel, G.  von Freymann, M.  Wegener, S. Pereira, K.  Busch, M.  Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater. 3,444-447 (2004).
[CrossRef] [PubMed]

Nature (2)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning and A. J. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographic lithography," Nature 404, 53-56 (2000).
[CrossRef] [PubMed]

S. Lin, J. Flemming, D. Hetherington, B. Smith, R. Biswas, K. Hot, M. Sigalas, W. Zubrycki, S. Kurtz, and J. Bur, "A three-dimensional photonic crystal operating at infrared wavelengths," Nature 394,251-253 (1998).
[CrossRef]

Phys. Rev. B (1)

C. T. Chan, S. Datta, K. M. Ho and C. M. Soukoulis, "A7 structure: A family of photonic crystals," Phys. Rev. B 50, 1988-1991 (1994).
[CrossRef]

PNAS (1)

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, "Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks," PNAS 101, 12429 -12434 (2004).
[CrossRef]

Science (1)

S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, "Full three-dimensional Photonic Bandgap Crystals at Near-Infrared Wavelengths," Science 289, 604-606 (2000).
[CrossRef] [PubMed]

Solid State Commun. (1)

K. M. Ho, C. T. Chen, C. M. Soukoulis, R. Biswas, M. Sigalas, "Photonic Band Gaps in three dimensions: New layer-by-layer periodic structures," Solid State Commun. 89, 413-416 (1994).
[CrossRef]

Other (3)

O. Toader, and S. John, Ph D thesis, University of Toronto, (2003).

D. Chanda, L. Abolghasemi, and P. Herman, "Numerical band calculation of holographically formed periodic structures with irregular motif," in Photonic Crystal Materials and Devices IV, A. Adibi, S.-Yu Lin, and A. Scherer, eds., Proc. SPIE 6128, 311-316 (2006).

D. Chanda, L. Abolghasemi, and P. Herman, "Diffractive optical elements based fabrication of photonic crystals," in Conference on Lasers and Electro-Optics 2006 Technical Digest (Optical Society of America, Washington, DC, 2006), CMV7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Formation of multiple diffracted beams from a single laser beam by a 1-D DOE and arrangement for photoresist exposure.

Fig. 2.
Fig. 2.

Periodic interference laser patterns created by (a) a single exposure with a 1D-DOE, (b) a single exposure with a similar 1D-DOE rotated by 90°, and (c) the resulting interlaced 3-D “Woodpile”-type structure due to combination of the two exposures in (a) and (b).

Fig. 3.
Fig. 3.

Variation of c/a ratio in SU-8 photoresist (n r =1.6) with normalized wavelength,λ d /Λ, for different refractive index values of the incidence medium (n i ).

Fig. 4.
Fig. 4.

Band dispersion diagram (a) for 3-D “Woodpile”-type structure in photoresist for values of n=1.6, c/a=1.2, and f≈25% and b) modified dispersion diagram with the same structure after double inversion to a silicon “Woodpile” with n=3.45, c/a=1.2, and f≈25%.

Fig. 5.
Fig. 5.

Variation of the complete bandgap with λ d /Λ ratio for silicon inverted structures of silicon logs in air background (f≈25%).

Fig. 6.
Fig. 6.

Top SEM view (a) of the DOE fabricated 3-D photonic crystal template together with cross-sectional view (b), showing 5 layers in the SU-8 photoresist. Inset ii) shows magnified version of cross-section and inset i) and inset iii) shows calculated isointensity surfaces.

Fig. 7.
Fig. 7.

Band calculation a) for 1D-DOE formed “Woodpile” template (f=64%, c/a=5.97, n r =1.6) shown in Fig. 6 and b) infrared spectral recording along Γ-Z direction.

Fig. 8.
Fig. 8.

Infrared transmission spectra through a “Woodpile” template (Fig. 6) for various angles of incidence (degree) from the sample normal.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

a = Λ a n d c = λ d n r 1 1 λ d 2 ( n r Λ ) 2 ,
R z c 8 , a n d ( c 2 2 R z ) S 2 R z ; { R z , c } ,
λ d Λ min { n d , n i , n r } ; c a 1
{ n d , n i } n r ; 1 c a

Metrics