Abstract

A simple optical signal demodulation technique is demonstrated for multi-point interrogation of fiber Bragg grating sensors. The wavelength-division responses of polarization-maintaining fiber Sagnac loop filters are flexibly controlled to interrogate the simultaneous optical intensity changes from the independent wavelength shifts of multiple fiber Bragg grating sensors. Experimental performance is also demonstrated to show the simultaneous detection of the separated FBG sensing signals by individual photo detectors.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
    [CrossRef]
  2. A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett., 18, 33-39 (1993).
    [CrossRef]
  3. M. A. Davis and A. D. Kersey, "All-fiber Bragg grating strain sensor demodulation technique using a wavelength division coupler," Electron. Lett. 30, 75-77 (1994).
    [CrossRef]
  4. R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, "All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating," Meas. Sci. and Technol. 9, 1969-1973 (1998).
    [CrossRef]
  5. S. Chung, J. Kim, B. A. Yu, B. Lee, "A fiber Bragg grating sensor demodulation technique using a polarization maintainging fiber loop mirror," IEEE Photon. Tech. Lett. 13, 1343-1345 (2001).
    [CrossRef]
  6. Y. G. Han, S. B. Lee, C. S. Kim, J. U. Kang, U. C. Paek, and Y. Chung, "Simultaneously measurement of temperature and strain using dual long-period fiber gratings with controlled temperature and strain sensitivities," Opt. Express 11, 476-481 (2003).
    [CrossRef] [PubMed]
  7. W. Shin, S. W. Han, C. S. Park, and K. Oh, "All fiber optical inter-band router for broadband wavelength division multiplexing," Opt. Express 12, 1815-1822 (2004).
    [CrossRef] [PubMed]
  8. C. S. Kim and J. U. Kang, "Multi-wavelength switching of Raman fiber ring laser incorporating composite polarization-maintaining fiber Lyot-Sagnac filter," Appl. Opt. 43, 3151-3157 (2004).
    [CrossRef] [PubMed]
  9. D. H. Kim and J. U. Kang, "Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity," Opt. Express 12, 4490-4495 (2004).
    [CrossRef] [PubMed]
  10. X. Yang, C.-L. Zhao, Q. Peng, X. Zhou, and C. Lu, "FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter," Opt. Commun.,  250, 63-68 (2005).
    [CrossRef]
  11. G. Chen and J. U. Kang, "Frequency discriminator based on ring-assisted fiber Sagnac filter," IEEE Photon. Tech. Lett. 17, 109-111 (2005).and J. U. Kang, "Multi-wavelength switching of Raman fiber ring laser incorporating composite polarization-maintaining fiber Lyot-Sagnac filter," Appl. Opt. 43, 3151-3157 (2004).
    [CrossRef]

2005 (1)

X. Yang, C.-L. Zhao, Q. Peng, X. Zhou, and C. Lu, "FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter," Opt. Commun.,  250, 63-68 (2005).
[CrossRef]

2004 (4)

2003 (2)

2001 (1)

S. Chung, J. Kim, B. A. Yu, B. Lee, "A fiber Bragg grating sensor demodulation technique using a polarization maintainging fiber loop mirror," IEEE Photon. Tech. Lett. 13, 1343-1345 (2001).
[CrossRef]

1998 (1)

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, "All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating," Meas. Sci. and Technol. 9, 1969-1973 (1998).
[CrossRef]

1994 (1)

M. A. Davis and A. D. Kersey, "All-fiber Bragg grating strain sensor demodulation technique using a wavelength division coupler," Electron. Lett. 30, 75-77 (1994).
[CrossRef]

1993 (1)

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett., 18, 33-39 (1993).
[CrossRef]

Bennion, I.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, "All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating," Meas. Sci. and Technol. 9, 1969-1973 (1998).
[CrossRef]

Berkoff, T. A.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett., 18, 33-39 (1993).
[CrossRef]

Chen, G.

Chung, S.

S. Chung, J. Kim, B. A. Yu, B. Lee, "A fiber Bragg grating sensor demodulation technique using a polarization maintainging fiber loop mirror," IEEE Photon. Tech. Lett. 13, 1343-1345 (2001).
[CrossRef]

Chung, Y.

Davis, M. A.

M. A. Davis and A. D. Kersey, "All-fiber Bragg grating strain sensor demodulation technique using a wavelength division coupler," Electron. Lett. 30, 75-77 (1994).
[CrossRef]

Everall, L. A.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, "All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating," Meas. Sci. and Technol. 9, 1969-1973 (1998).
[CrossRef]

Fallon, R. W.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, "All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating," Meas. Sci. and Technol. 9, 1969-1973 (1998).
[CrossRef]

Han, S. W.

Han, Y. G.

Kang, J. U.

Kersey, A. D.

M. A. Davis and A. D. Kersey, "All-fiber Bragg grating strain sensor demodulation technique using a wavelength division coupler," Electron. Lett. 30, 75-77 (1994).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett., 18, 33-39 (1993).
[CrossRef]

Kim, C. S.

Kim, D. H.

Kim, J.

S. Chung, J. Kim, B. A. Yu, B. Lee, "A fiber Bragg grating sensor demodulation technique using a polarization maintainging fiber loop mirror," IEEE Photon. Tech. Lett. 13, 1343-1345 (2001).
[CrossRef]

Lee, B.

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

S. Chung, J. Kim, B. A. Yu, B. Lee, "A fiber Bragg grating sensor demodulation technique using a polarization maintainging fiber loop mirror," IEEE Photon. Tech. Lett. 13, 1343-1345 (2001).
[CrossRef]

Lee, S. B.

Lu, C.

X. Yang, C.-L. Zhao, Q. Peng, X. Zhou, and C. Lu, "FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter," Opt. Commun.,  250, 63-68 (2005).
[CrossRef]

Morey, W. W.

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett., 18, 33-39 (1993).
[CrossRef]

Oh, K.

Paek, U. C.

Park, C. S.

Peng, Q.

X. Yang, C.-L. Zhao, Q. Peng, X. Zhou, and C. Lu, "FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter," Opt. Commun.,  250, 63-68 (2005).
[CrossRef]

Shin, W.

Williams, J. A. R.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, "All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating," Meas. Sci. and Technol. 9, 1969-1973 (1998).
[CrossRef]

Yang, X.

X. Yang, C.-L. Zhao, Q. Peng, X. Zhou, and C. Lu, "FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter," Opt. Commun.,  250, 63-68 (2005).
[CrossRef]

Yu, B. A.

S. Chung, J. Kim, B. A. Yu, B. Lee, "A fiber Bragg grating sensor demodulation technique using a polarization maintainging fiber loop mirror," IEEE Photon. Tech. Lett. 13, 1343-1345 (2001).
[CrossRef]

Zhang, L.

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, "All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating," Meas. Sci. and Technol. 9, 1969-1973 (1998).
[CrossRef]

Zhao, C.-L.

X. Yang, C.-L. Zhao, Q. Peng, X. Zhou, and C. Lu, "FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter," Opt. Commun.,  250, 63-68 (2005).
[CrossRef]

Zhou, X.

X. Yang, C.-L. Zhao, Q. Peng, X. Zhou, and C. Lu, "FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter," Opt. Commun.,  250, 63-68 (2005).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

M. A. Davis and A. D. Kersey, "All-fiber Bragg grating strain sensor demodulation technique using a wavelength division coupler," Electron. Lett. 30, 75-77 (1994).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

S. Chung, J. Kim, B. A. Yu, B. Lee, "A fiber Bragg grating sensor demodulation technique using a polarization maintainging fiber loop mirror," IEEE Photon. Tech. Lett. 13, 1343-1345 (2001).
[CrossRef]

Meas. Sci. and Technol. (1)

R. W. Fallon, L. Zhang, L. A. Everall, J. A. R. Williams, and I. Bennion, "All-fibre optical sensing system: Bragg grating sensor interrogated by a long-period grating," Meas. Sci. and Technol. 9, 1969-1973 (1998).
[CrossRef]

Opt. Commun. (1)

X. Yang, C.-L. Zhao, Q. Peng, X. Zhou, and C. Lu, "FBG sensor interrogation with high temperature insensitivity by using a HiBi-PCF Sagnac loop filter," Opt. Commun.,  250, 63-68 (2005).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

B. Lee, "Review of the present status of optical fiber sensors," Opt. Fiber Technol. 9, 57-79 (2003).
[CrossRef]

Opt. Lett. (1)

A. D. Kersey, T. A. Berkoff, and W. W. Morey, "Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter," Opt. Lett., 18, 33-39 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the multi-point optical signal interrogator for multiple FBG-based optical sensors.

Fig. 2.
Fig. 2.

Reflection intensity of multiple FBG 1 and 2.

Fig. 3.
Fig. 3.

(a) Filter spectra of TA, RA, TB, and TC, (b) Cascaded filters spectra of TA × TB and RA × TC.

Fig. 4.
Fig. 4.

(a) Interrogated spectra at the position of PD1 through the spectral response of TA ×TB, (b) Interrogated spectra at PD2 with through the spectral response of RA ×TC.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T ( λ ) = cos 2 ( π λ Δ n L eff + ϕ )
R ( λ ) = 1 T ( λ )
Δ λ peak-peak = λ 2 Δ n L eff

Metrics