Abstract

S-band Tm3+/Yb3+ codoped tellurite fiber amplifier pumped by a 980nm laser diode is proposed and modeled taking into consideration of the energy transfer process from Yb3+ to Tm3+ and the laser cavity inside a codoped fiber amplifier. S-band spectral gains for the codoped fiber amplifiers are investigated. The results show that considerable gain improvement can be achieved by constructing 1050nm laser cavity inside the amplifier.

© 2006 Optical Society of America

Full Article  |  PDF Article
Related Articles
Tm3+-doped tellurite glass for a broadband amplifier at 1.47 µm

Mira Naftaly, Shaoxiong Shen, and Animesh Jha
Appl. Opt. 39(27) 4979-4984 (2000)

Broadband emission in Er3+-Tm3+ codoped tellurite fibre

Lihui Huang, Animesh Jha, Shaoxiong Shen, and Xiaobo Liu
Opt. Express 12(11) 2429-2434 (2004)

S-band optical amplification by an internally generated pump in thulium ytterbium codoped fiber

Jun Chang, Qing-Pu Wang, Xingyu Zhang, Zhejin Liu, Zhaojun Liu, and Gang-Ding Peng
Opt. Express 13(11) 3902-3912 (2005)

References

  • View by:
  • |
  • |
  • |

  1. Jun Chang, Qingpu Wang, and Gangding Peng, “Optical amplification in Yb3+-codoped thulium doped silica fiber,” Opt. Mat. 28, 1088–1094(2006).
    [Crossref]
  2. Jun Chang, Qingpu Wang, Xingyu Zhang, Zejin Liu, Zhaojun Liu, and Gangding Peng, “S-band optical amplification by an internally generated pump in thulium ytterbium codoped fiber, ” Opt. Express 13, 3902–3912(2005).
    [Crossref] [PubMed]
  3. Shaoxiong Shen, Animesh Jha, Lihui Huang, and Purushottam Joshi, “980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30,1437(2005).
    [Crossref] [PubMed]
  4. A. Braud, S. Girard, J. L. Doualan, M. Thuau, and R. Moncorge, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 µm,” Phys. Rev. B 61, 5280 (2000).
    [Crossref]
  5. C. Y. Chen, R. R. Petrin, D. C. Yen, and W. A. Sibley, “Concentration-dependent energy-transfer processes in Er3+-and Tm3+-doped heavy-metal fluoride glass,” Opt. Lett.s 14, 432(1989).
    [Crossref]
  6. P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fiber amplifiers,” Optical and Quantum Electron. 36, 201–212(2004).
    [Crossref]
  7. Claudio Floridia, M. T. Carvalho, S. R. Lüthi, and A. S. L. Gomes, “Modeling the distributed gain of single-(1050 or 1410 nm) and dual-wavelength (800+1050 nm or 800+1410 nm) pumped thulium-doped fiber amplifiers,” Opt. Lett. 29, 1983–1985(2004).
    [Crossref] [PubMed]
  8. Tadashi Kasamatsu, Yutaka Yano, and Takashi Ono, “1.49-µm-Band gain-shifted thulium-doped fiber amplifier for WDM transmission system,” J. Lightwave Technol. 20, 1826–1838(2002).
    [Crossref]
  9. S. Tanabe, “Properties of Tm3+-doped tellurite glasses for 1.4-um amplifier,” Proc. SPIE 4282, 85(2001).
    [Crossref]
  10. L. N. Ng, E. R. Taylor, and J. Nilsson, “795 nm and 1064 nm dual pump thulium-doped tellurite fibre for S-band amplification,” Electron. Lett. 38, 1246 (2002).
    [Crossref]
  11. E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-Doped Tellurite Fiber Amplifier,” IEEE Photonics Technol. Lett. 16, 777(2004).
    [Crossref]
  12. Mira Naftaly, Shaoxiong Shen, and Animesh Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47µm,” Applied Optics 39, 4979(2000).
    [Crossref]
  13. D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134: A299–A306 (1964).
    [Crossref]
  14. A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863(1997).
    [Crossref]
  15. William J. Minisccalco, “Optical and Electronic Properties of Rare Earth Ions in Glasses,” in Rare-earth-doped fiber lasers and amplifiers, Michel J.F. Digonnet, ed. (Marcel Dekker, New York, 2001)
  16. Chun Jiang, Fuxi Gan, and Junzhou Zhang, “Yb: tellurite laser glass with high emission cross-section,” Mat. Lett. 41, 209–214 (1999).
    [Crossref]
  17. Tadashi Kasamatsu, Yutaka Yano, and Hitoshi Sekita, “1.50-µm-band gain-shifted thulium-doped fiber amplifier with 1.05µ and 1.56µm dual-wavelength pumping,” Opt. Lett.,  24, 1684–1686(1999).
    [Crossref]
  18. Tadashi Kasamatsu, Yutaka Yano, and Takashi Ono, “Laser-Diode-Pumped Highly Efficient Gain-Shifted Thulium-Doped Fiber Amplifier Operating in the 1480–1510-nm Band,” IEEE Photonics Technol. Lett. 13, 433–435(2001)
    [Crossref]

2006 (1)

Jun Chang, Qingpu Wang, and Gangding Peng, “Optical amplification in Yb3+-codoped thulium doped silica fiber,” Opt. Mat. 28, 1088–1094(2006).
[Crossref]

2005 (2)

2004 (3)

Claudio Floridia, M. T. Carvalho, S. R. Lüthi, and A. S. L. Gomes, “Modeling the distributed gain of single-(1050 or 1410 nm) and dual-wavelength (800+1050 nm or 800+1410 nm) pumped thulium-doped fiber amplifiers,” Opt. Lett. 29, 1983–1985(2004).
[Crossref] [PubMed]

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fiber amplifiers,” Optical and Quantum Electron. 36, 201–212(2004).
[Crossref]

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-Doped Tellurite Fiber Amplifier,” IEEE Photonics Technol. Lett. 16, 777(2004).
[Crossref]

2002 (2)

L. N. Ng, E. R. Taylor, and J. Nilsson, “795 nm and 1064 nm dual pump thulium-doped tellurite fibre for S-band amplification,” Electron. Lett. 38, 1246 (2002).
[Crossref]

Tadashi Kasamatsu, Yutaka Yano, and Takashi Ono, “1.49-µm-Band gain-shifted thulium-doped fiber amplifier for WDM transmission system,” J. Lightwave Technol. 20, 1826–1838(2002).
[Crossref]

2001 (2)

Tadashi Kasamatsu, Yutaka Yano, and Takashi Ono, “Laser-Diode-Pumped Highly Efficient Gain-Shifted Thulium-Doped Fiber Amplifier Operating in the 1480–1510-nm Band,” IEEE Photonics Technol. Lett. 13, 433–435(2001)
[Crossref]

S. Tanabe, “Properties of Tm3+-doped tellurite glasses for 1.4-um amplifier,” Proc. SPIE 4282, 85(2001).
[Crossref]

2000 (2)

Mira Naftaly, Shaoxiong Shen, and Animesh Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47µm,” Applied Optics 39, 4979(2000).
[Crossref]

A. Braud, S. Girard, J. L. Doualan, M. Thuau, and R. Moncorge, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 µm,” Phys. Rev. B 61, 5280 (2000).
[Crossref]

1999 (2)

1997 (1)

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863(1997).
[Crossref]

1989 (1)

C. Y. Chen, R. R. Petrin, D. C. Yen, and W. A. Sibley, “Concentration-dependent energy-transfer processes in Er3+-and Tm3+-doped heavy-metal fluoride glass,” Opt. Lett.s 14, 432(1989).
[Crossref]

1964 (1)

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134: A299–A306 (1964).
[Crossref]

Blanc, W.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fiber amplifiers,” Optical and Quantum Electron. 36, 201–212(2004).
[Crossref]

Braud, A.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, and R. Moncorge, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 µm,” Phys. Rev. B 61, 5280 (2000).
[Crossref]

Caponi, R.

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-Doped Tellurite Fiber Amplifier,” IEEE Photonics Technol. Lett. 16, 777(2004).
[Crossref]

Carvalho, M. T.

Chang, Jun

Chen, C. Y.

C. Y. Chen, R. R. Petrin, D. C. Yen, and W. A. Sibley, “Concentration-dependent energy-transfer processes in Er3+-and Tm3+-doped heavy-metal fluoride glass,” Opt. Lett.s 14, 432(1989).
[Crossref]

Doualan, J. L.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, and R. Moncorge, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 µm,” Phys. Rev. B 61, 5280 (2000).
[Crossref]

Dussardier, B.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fiber amplifiers,” Optical and Quantum Electron. 36, 201–212(2004).
[Crossref]

Faure, B.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fiber amplifiers,” Optical and Quantum Electron. 36, 201–212(2004).
[Crossref]

Floridia, Claudio

Gan, Fuxi

Chun Jiang, Fuxi Gan, and Junzhou Zhang, “Yb: tellurite laser glass with high emission cross-section,” Mat. Lett. 41, 209–214 (1999).
[Crossref]

Girard, S.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, and R. Moncorge, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 µm,” Phys. Rev. B 61, 5280 (2000).
[Crossref]

Gomes, A. S. L.

Huang, Lihui

Jha, Animesh

Shaoxiong Shen, Animesh Jha, Lihui Huang, and Purushottam Joshi, “980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30,1437(2005).
[Crossref] [PubMed]

Mira Naftaly, Shaoxiong Shen, and Animesh Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47µm,” Applied Optics 39, 4979(2000).
[Crossref]

Jiang, Chun

Chun Jiang, Fuxi Gan, and Junzhou Zhang, “Yb: tellurite laser glass with high emission cross-section,” Mat. Lett. 41, 209–214 (1999).
[Crossref]

Joshi, Purushottam

Karasek, M.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fiber amplifiers,” Optical and Quantum Electron. 36, 201–212(2004).
[Crossref]

Kasamatsu, Tadashi

Liu, Zejin

Liu, Zhaojun

Lüthi, S. R.

McCumber, D. E.

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134: A299–A306 (1964).
[Crossref]

Minisccalco, William J.

William J. Minisccalco, “Optical and Electronic Properties of Rare Earth Ions in Glasses,” in Rare-earth-doped fiber lasers and amplifiers, Michel J.F. Digonnet, ed. (Marcel Dekker, New York, 2001)

Moncorge, R.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, and R. Moncorge, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 µm,” Phys. Rev. B 61, 5280 (2000).
[Crossref]

Mori, A.

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863(1997).
[Crossref]

Naftaly, Mira

Mira Naftaly, Shaoxiong Shen, and Animesh Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47µm,” Applied Optics 39, 4979(2000).
[Crossref]

Ng, L. N.

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-Doped Tellurite Fiber Amplifier,” IEEE Photonics Technol. Lett. 16, 777(2004).
[Crossref]

L. N. Ng, E. R. Taylor, and J. Nilsson, “795 nm and 1064 nm dual pump thulium-doped tellurite fibre for S-band amplification,” Electron. Lett. 38, 1246 (2002).
[Crossref]

Nilsson, J.

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-Doped Tellurite Fiber Amplifier,” IEEE Photonics Technol. Lett. 16, 777(2004).
[Crossref]

L. N. Ng, E. R. Taylor, and J. Nilsson, “795 nm and 1064 nm dual pump thulium-doped tellurite fibre for S-band amplification,” Electron. Lett. 38, 1246 (2002).
[Crossref]

Ohishi, Y.

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863(1997).
[Crossref]

Ono, Takashi

Tadashi Kasamatsu, Yutaka Yano, and Takashi Ono, “1.49-µm-Band gain-shifted thulium-doped fiber amplifier for WDM transmission system,” J. Lightwave Technol. 20, 1826–1838(2002).
[Crossref]

Tadashi Kasamatsu, Yutaka Yano, and Takashi Ono, “Laser-Diode-Pumped Highly Efficient Gain-Shifted Thulium-Doped Fiber Amplifier Operating in the 1480–1510-nm Band,” IEEE Photonics Technol. Lett. 13, 433–435(2001)
[Crossref]

Pagano, A.

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-Doped Tellurite Fiber Amplifier,” IEEE Photonics Technol. Lett. 16, 777(2004).
[Crossref]

Peng, Gangding

Peterka, P.

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fiber amplifiers,” Optical and Quantum Electron. 36, 201–212(2004).
[Crossref]

Petrin, R. R.

C. Y. Chen, R. R. Petrin, D. C. Yen, and W. A. Sibley, “Concentration-dependent energy-transfer processes in Er3+-and Tm3+-doped heavy-metal fluoride glass,” Opt. Lett.s 14, 432(1989).
[Crossref]

Potenza, M.

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-Doped Tellurite Fiber Amplifier,” IEEE Photonics Technol. Lett. 16, 777(2004).
[Crossref]

Sekita, Hitoshi

Shen, Shaoxiong

Shaoxiong Shen, Animesh Jha, Lihui Huang, and Purushottam Joshi, “980-nm diode-pumped Tm3+/Yb3+-codoped tellurite fiber for S-band amplification,” Opt. Lett. 30,1437(2005).
[Crossref] [PubMed]

Mira Naftaly, Shaoxiong Shen, and Animesh Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47µm,” Applied Optics 39, 4979(2000).
[Crossref]

Sibley, W. A.

C. Y. Chen, R. R. Petrin, D. C. Yen, and W. A. Sibley, “Concentration-dependent energy-transfer processes in Er3+-and Tm3+-doped heavy-metal fluoride glass,” Opt. Lett.s 14, 432(1989).
[Crossref]

Sordo, B.

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-Doped Tellurite Fiber Amplifier,” IEEE Photonics Technol. Lett. 16, 777(2004).
[Crossref]

Sudo, S.

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863(1997).
[Crossref]

Tanabe, S.

S. Tanabe, “Properties of Tm3+-doped tellurite glasses for 1.4-um amplifier,” Proc. SPIE 4282, 85(2001).
[Crossref]

Taylor, E. R.

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-Doped Tellurite Fiber Amplifier,” IEEE Photonics Technol. Lett. 16, 777(2004).
[Crossref]

L. N. Ng, E. R. Taylor, and J. Nilsson, “795 nm and 1064 nm dual pump thulium-doped tellurite fibre for S-band amplification,” Electron. Lett. 38, 1246 (2002).
[Crossref]

Thuau, M.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, and R. Moncorge, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 µm,” Phys. Rev. B 61, 5280 (2000).
[Crossref]

Wang, Qingpu

Yano, Yutaka

Yen, D. C.

C. Y. Chen, R. R. Petrin, D. C. Yen, and W. A. Sibley, “Concentration-dependent energy-transfer processes in Er3+-and Tm3+-doped heavy-metal fluoride glass,” Opt. Lett.s 14, 432(1989).
[Crossref]

Zhang, Junzhou

Chun Jiang, Fuxi Gan, and Junzhou Zhang, “Yb: tellurite laser glass with high emission cross-section,” Mat. Lett. 41, 209–214 (1999).
[Crossref]

Zhang, Xingyu

Applied Optics (1)

Mira Naftaly, Shaoxiong Shen, and Animesh Jha, “Tm3+-doped tellurite glass for a broadband amplifier at 1.47µm,” Applied Optics 39, 4979(2000).
[Crossref]

Electron. Lett. (2)

L. N. Ng, E. R. Taylor, and J. Nilsson, “795 nm and 1064 nm dual pump thulium-doped tellurite fibre for S-band amplification,” Electron. Lett. 38, 1246 (2002).
[Crossref]

A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fibre laser and amplifier,” Electron. Lett. 33, 863(1997).
[Crossref]

IEEE Photonics Technol. Lett. (2)

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, “Thulium-Doped Tellurite Fiber Amplifier,” IEEE Photonics Technol. Lett. 16, 777(2004).
[Crossref]

Tadashi Kasamatsu, Yutaka Yano, and Takashi Ono, “Laser-Diode-Pumped Highly Efficient Gain-Shifted Thulium-Doped Fiber Amplifier Operating in the 1480–1510-nm Band,” IEEE Photonics Technol. Lett. 13, 433–435(2001)
[Crossref]

J. Lightwave Technol. (1)

Mat. Lett. (1)

Chun Jiang, Fuxi Gan, and Junzhou Zhang, “Yb: tellurite laser glass with high emission cross-section,” Mat. Lett. 41, 209–214 (1999).
[Crossref]

Opt. Express (1)

Opt. Lett. (3)

Opt. Lett.s (1)

C. Y. Chen, R. R. Petrin, D. C. Yen, and W. A. Sibley, “Concentration-dependent energy-transfer processes in Er3+-and Tm3+-doped heavy-metal fluoride glass,” Opt. Lett.s 14, 432(1989).
[Crossref]

Opt. Mat. (1)

Jun Chang, Qingpu Wang, and Gangding Peng, “Optical amplification in Yb3+-codoped thulium doped silica fiber,” Opt. Mat. 28, 1088–1094(2006).
[Crossref]

Optical and Quantum Electron. (1)

P. Peterka, B. Faure, W. Blanc, M. Karasek, and B. Dussardier, “Theoretical modelling of S-band thulium-doped silica fiber amplifiers,” Optical and Quantum Electron. 36, 201–212(2004).
[Crossref]

Phys. Rev. (1)

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134: A299–A306 (1964).
[Crossref]

Phys. Rev. B (1)

A. Braud, S. Girard, J. L. Doualan, M. Thuau, and R. Moncorge, “Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 µm,” Phys. Rev. B 61, 5280 (2000).
[Crossref]

Proc. SPIE (1)

S. Tanabe, “Properties of Tm3+-doped tellurite glasses for 1.4-um amplifier,” Proc. SPIE 4282, 85(2001).
[Crossref]

Other (1)

William J. Minisccalco, “Optical and Electronic Properties of Rare Earth Ions in Glasses,” in Rare-earth-doped fiber lasers and amplifiers, Michel J.F. Digonnet, ed. (Marcel Dekker, New York, 2001)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Energy level of Tm 3+, Yb 3+ and pump scheme

Fig.2 .
Fig.2 .

pectral gain of the codoped fiber

Tables (1)

Tables Icon

Table 1. Parameters used in the numerical simulations

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d N T 1 d t = N T 2 A T 21 n r + N T 3 ( W T 31 + A T 31 r ) K Y T 2 N T 1 N Y 1 N T 1 ( W T 13 + W T 14 + A T 10 r )
d N T 2 d t = N T 0 W T 02 N T 2 A T 21 n r + N T 5 A T 52 r + K Y T 1 N T 0 N Y 1
d N T 3 d t = N T 1 W T 13 + N T 4 A T 43 n r N T 3 ( W T 31 + W T 35 + A T 30 r )
d N T 4 d t = N T 1 W T 14 N T 4 A T 43 n r + K YT 2 N T 1 N Y 1
d N T 5 d t = N T 3 W T 35 N T 5 ( A T 50 r + A T 52 r )
N T = N T 0 + N T 1 + N T 2 + N T 3 + N T 4 + N T 5
d N Y 1 d t = N Y 0 W Y 01 N Y 1 W Y 10 K YT 1 N T 0 N Y 1 K YT 2 N T 1 N Y 1 N Y 1 Y 1
N Y = N Y 0 + N Y 1
W ij ( z ) = 0 λ Γ ( λ ) σ ij ( P λ + ( z , λ ) + P λ ( z , λ ) ) h c π b 2 d λ
Γ ( λ ) = 0 E ( r , φ , λ ) 2 N ( r ) r d r N 0 E ( r , φ , λ ) 2 r d r
d P ± ( λ ) d z = Γ ( λ ) P ± ( λ ) ij ( N i σ ij ( λ ) N j σ ji ( λ ) ) π Γ ( λ ) ij 2 h ν ij Δ ν N i σ ij ( λ )
σ 21 ( ν ) = σ 12 ( ν ) exp ( ε h ν kT )

Metrics