Abstract

S-band Tm3+/Yb3+ codoped tellurite fiber amplifier pumped by a 980nm laser diode is proposed and modeled taking into consideration of the energy transfer process from Yb3+ to Tm3+ and the laser cavity inside a codoped fiber amplifier. S-band spectral gains for the codoped fiber amplifiers are investigated. The results show that considerable gain improvement can be achieved by constructing 1050nm laser cavity inside the amplifier.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Jun Chang, Qingpu Wang, Gangding Peng, "Optical amplification in Yb3+-co-doped thulium doped silica fiber," Opt. Mat. 28, 1088-1094 (2006).
    [CrossRef]
  2. Jun Chang, Qingpu Wang, Xingyu Zhang, Zejin Liu, Zhaojun Liu, Gangding Peng, "S-band optical amplification by an internally generated pump in thulium ytterbium co-doped fiber, " Opt. Express 13, 3902-3912 (2005).
    [CrossRef] [PubMed]
  3. Shaoxiong Shen, Animesh Jha, Lihui Huang, Purushottam Joshi, "980-nm diode-pumped Tm3+/Yb3+-co-doped tellurite fiber for S-band amplification," Opt. Lett. 30,1437 (2005).
    [CrossRef] [PubMed]
  4. A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, "Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm," Phys. Rev. B 61, 5280 (2000).
    [CrossRef]
  5. <jrn> C. Y. Chen, R. R. Petrin, D. C. Yen, W. A. Sibley, "Concentration-dependent energy-transfer processes in Er3+- and Tm3+-doped heavy-metal fluoride glass," Opt. Letts 14, 432 (1989).</jrn>
    [CrossRef]
  6. P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, "Theoretical modeling of S-band thulium-doped silica fiber amplifiers," Optical and Quantum Electron. 36, 201-212 (2004).
    [CrossRef]
  7. C. Floridia, M. T. Carvalho, S. R. Lüthi, and A. S. L. Gomes, "Modeling the distributed gain of single- (1050 or 1410 nm) and dual-wavelength (800 + 1050 nm or 800 + 1410 nm) pumped thulium-doped fiber amplifiers," Opt. Lett. 29, 1983-1985 (2004).
    [CrossRef] [PubMed]
  8. Tadashi Kasamatsu, Yutaka Yano, Takashi Ono, "1.49-μm-Band gain-shifted thulium-doped fiber amplifier for WDM transmission system," J. Lightwave Technol. 20, 1826-1838 (2002).
    [CrossRef]
  9. S. Tanabe, "Properties of Tm3+-doped tellurite glasses for 1.4-um amplifier," Proc. SPIE 4282, 85 (2001).
    [CrossRef]
  10. L. N. Ng, E. R. Taylor, and J. Nilsson, "795 nm and 1064 nm dual pump thulium-doped tellurite fibre for S-band amplification," Electron. Lett. 38, 1246 (2002).
    [CrossRef]
  11. E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-Doped Tellurite Fiber Amplifier," IEEE Photonics Technol. Lett. 16, 777 (2004).
    [CrossRef]
  12. Mira Naftaly, Shaoxiong Shen, Animesh Jha, "Tm3+-doped tellurite glass for a broadband amplifier at 1.47μm," Appl. Opt. 39, 4979 (2000).
    [CrossRef]
  13. D. E. McCumber, "Theory of phonon-terminated optical masers," Phys. Rev. 134, A299-A306 (1964).
    [CrossRef]
  14. A. Mori, Y. Ohishi and S. Sudo, "Erbium-doped tellurite glass fibre laser and amplifier," Electron. Lett. 33, 863 (1997).
    [CrossRef]
  15. W. J. Minisccalco, "Optical and Electronic Properties of Rare Earth Ions in Glasses," in Rare-earth-doped fiber lasers and amplifiers, M. J. F. Digonnet, ed. (Marcel Dekker, New York, 2001)
  16. Chun Jiang, Fuxi Gan, Junzhou Zhang, "Yb: tellurite laser glass with high emission cross-section," Mat. Lett. 41, 209-214 (1999).
    [CrossRef]
  17. Tadashi Kasamatsu, Yutaka Yano, Hitoshi Sekita, "1.50-μm-band gain-shifted thulium-doped fiber amplifier with 1.05μand 1.56μm dual-wavelength pumping," Opt. Lett.  24, 1684-1686 (1999).
    [CrossRef]
  18. Tadashi Kasamatsu, Yutaka Yano, and Takashi Ono, "Laser-Diode-Pumped Highly Efficient Gain-Shifted Thulium-Doped Fiber Amplifier Operating in the 1480-1510-nm Band," IEEE Photonics Technol. Lett. 13, 433-435 (2001)
    [CrossRef]

2006 (1)

Jun Chang, Qingpu Wang, Gangding Peng, "Optical amplification in Yb3+-co-doped thulium doped silica fiber," Opt. Mat. 28, 1088-1094 (2006).
[CrossRef]

2005 (2)

2004 (3)

P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, "Theoretical modeling of S-band thulium-doped silica fiber amplifiers," Optical and Quantum Electron. 36, 201-212 (2004).
[CrossRef]

C. Floridia, M. T. Carvalho, S. R. Lüthi, and A. S. L. Gomes, "Modeling the distributed gain of single- (1050 or 1410 nm) and dual-wavelength (800 + 1050 nm or 800 + 1410 nm) pumped thulium-doped fiber amplifiers," Opt. Lett. 29, 1983-1985 (2004).
[CrossRef] [PubMed]

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-Doped Tellurite Fiber Amplifier," IEEE Photonics Technol. Lett. 16, 777 (2004).
[CrossRef]

2002 (2)

L. N. Ng, E. R. Taylor, and J. Nilsson, "795 nm and 1064 nm dual pump thulium-doped tellurite fibre for S-band amplification," Electron. Lett. 38, 1246 (2002).
[CrossRef]

Tadashi Kasamatsu, Yutaka Yano, Takashi Ono, "1.49-μm-Band gain-shifted thulium-doped fiber amplifier for WDM transmission system," J. Lightwave Technol. 20, 1826-1838 (2002).
[CrossRef]

2001 (2)

Tadashi Kasamatsu, Yutaka Yano, and Takashi Ono, "Laser-Diode-Pumped Highly Efficient Gain-Shifted Thulium-Doped Fiber Amplifier Operating in the 1480-1510-nm Band," IEEE Photonics Technol. Lett. 13, 433-435 (2001)
[CrossRef]

S. Tanabe, "Properties of Tm3+-doped tellurite glasses for 1.4-um amplifier," Proc. SPIE 4282, 85 (2001).
[CrossRef]

2000 (2)

Mira Naftaly, Shaoxiong Shen, Animesh Jha, "Tm3+-doped tellurite glass for a broadband amplifier at 1.47μm," Appl. Opt. 39, 4979 (2000).
[CrossRef]

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, "Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm," Phys. Rev. B 61, 5280 (2000).
[CrossRef]

1999 (2)

1997 (1)

A. Mori, Y. Ohishi and S. Sudo, "Erbium-doped tellurite glass fibre laser and amplifier," Electron. Lett. 33, 863 (1997).
[CrossRef]

1964 (1)

D. E. McCumber, "Theory of phonon-terminated optical masers," Phys. Rev. 134, A299-A306 (1964).
[CrossRef]

Blanc, W.

P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, "Theoretical modeling of S-band thulium-doped silica fiber amplifiers," Optical and Quantum Electron. 36, 201-212 (2004).
[CrossRef]

Braud, A.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, "Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm," Phys. Rev. B 61, 5280 (2000).
[CrossRef]

Caponi, R.

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-Doped Tellurite Fiber Amplifier," IEEE Photonics Technol. Lett. 16, 777 (2004).
[CrossRef]

Carvalho,

Doualan, J. L.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, "Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm," Phys. Rev. B 61, 5280 (2000).
[CrossRef]

Dussardier, B.

P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, "Theoretical modeling of S-band thulium-doped silica fiber amplifiers," Optical and Quantum Electron. 36, 201-212 (2004).
[CrossRef]

Faure, B.

P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, "Theoretical modeling of S-band thulium-doped silica fiber amplifiers," Optical and Quantum Electron. 36, 201-212 (2004).
[CrossRef]

Floridia,

Girard, S.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, "Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm," Phys. Rev. B 61, 5280 (2000).
[CrossRef]

Karasek, M.

P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, "Theoretical modeling of S-band thulium-doped silica fiber amplifiers," Optical and Quantum Electron. 36, 201-212 (2004).
[CrossRef]

Luthi,

Moncorge, R.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, "Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm," Phys. Rev. B 61, 5280 (2000).
[CrossRef]

Mori, A.

A. Mori, Y. Ohishi and S. Sudo, "Erbium-doped tellurite glass fibre laser and amplifier," Electron. Lett. 33, 863 (1997).
[CrossRef]

Ng, L. N.

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-Doped Tellurite Fiber Amplifier," IEEE Photonics Technol. Lett. 16, 777 (2004).
[CrossRef]

L. N. Ng, E. R. Taylor, and J. Nilsson, "795 nm and 1064 nm dual pump thulium-doped tellurite fibre for S-band amplification," Electron. Lett. 38, 1246 (2002).
[CrossRef]

Nilsson, J.

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-Doped Tellurite Fiber Amplifier," IEEE Photonics Technol. Lett. 16, 777 (2004).
[CrossRef]

L. N. Ng, E. R. Taylor, and J. Nilsson, "795 nm and 1064 nm dual pump thulium-doped tellurite fibre for S-band amplification," Electron. Lett. 38, 1246 (2002).
[CrossRef]

Ohishi, Y.

A. Mori, Y. Ohishi and S. Sudo, "Erbium-doped tellurite glass fibre laser and amplifier," Electron. Lett. 33, 863 (1997).
[CrossRef]

Pagano, A.

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-Doped Tellurite Fiber Amplifier," IEEE Photonics Technol. Lett. 16, 777 (2004).
[CrossRef]

Peterka, P.

P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, "Theoretical modeling of S-band thulium-doped silica fiber amplifiers," Optical and Quantum Electron. 36, 201-212 (2004).
[CrossRef]

Potenza, M.

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-Doped Tellurite Fiber Amplifier," IEEE Photonics Technol. Lett. 16, 777 (2004).
[CrossRef]

Sordo, B.

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-Doped Tellurite Fiber Amplifier," IEEE Photonics Technol. Lett. 16, 777 (2004).
[CrossRef]

Sudo, S.

A. Mori, Y. Ohishi and S. Sudo, "Erbium-doped tellurite glass fibre laser and amplifier," Electron. Lett. 33, 863 (1997).
[CrossRef]

Tanabe, S.

S. Tanabe, "Properties of Tm3+-doped tellurite glasses for 1.4-um amplifier," Proc. SPIE 4282, 85 (2001).
[CrossRef]

Taylor, E. R.

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-Doped Tellurite Fiber Amplifier," IEEE Photonics Technol. Lett. 16, 777 (2004).
[CrossRef]

L. N. Ng, E. R. Taylor, and J. Nilsson, "795 nm and 1064 nm dual pump thulium-doped tellurite fibre for S-band amplification," Electron. Lett. 38, 1246 (2002).
[CrossRef]

Thuau, M.

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, "Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm," Phys. Rev. B 61, 5280 (2000).
[CrossRef]

Applied Optics (1)

Mira Naftaly, Shaoxiong Shen, Animesh Jha, "Tm3+-doped tellurite glass for a broadband amplifier at 1.47μm," Appl. Opt. 39, 4979 (2000).
[CrossRef]

Electron. Lett. (2)

L. N. Ng, E. R. Taylor, and J. Nilsson, "795 nm and 1064 nm dual pump thulium-doped tellurite fibre for S-band amplification," Electron. Lett. 38, 1246 (2002).
[CrossRef]

A. Mori, Y. Ohishi and S. Sudo, "Erbium-doped tellurite glass fibre laser and amplifier," Electron. Lett. 33, 863 (1997).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

E. R. Taylor, L. N. Ng, J. Nilsson, R. Caponi, A. Pagano, M. Potenza, and B. Sordo, "Thulium-Doped Tellurite Fiber Amplifier," IEEE Photonics Technol. Lett. 16, 777 (2004).
[CrossRef]

Tadashi Kasamatsu, Yutaka Yano, and Takashi Ono, "Laser-Diode-Pumped Highly Efficient Gain-Shifted Thulium-Doped Fiber Amplifier Operating in the 1480-1510-nm Band," IEEE Photonics Technol. Lett. 13, 433-435 (2001)
[CrossRef]

J. Lightwave Technol. (1)

Mat. Lett. (1)

Chun Jiang, Fuxi Gan, Junzhou Zhang, "Yb: tellurite laser glass with high emission cross-section," Mat. Lett. 41, 209-214 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Mat. (1)

Jun Chang, Qingpu Wang, Gangding Peng, "Optical amplification in Yb3+-co-doped thulium doped silica fiber," Opt. Mat. 28, 1088-1094 (2006).
[CrossRef]

Optical and Quantum Electron. (1)

P. Peterka, B. Faure, W. Blanc, M. Karasek, B. Dussardier, "Theoretical modeling of S-band thulium-doped silica fiber amplifiers," Optical and Quantum Electron. 36, 201-212 (2004).
[CrossRef]

Phys. Rev. (1)

D. E. McCumber, "Theory of phonon-terminated optical masers," Phys. Rev. 134, A299-A306 (1964).
[CrossRef]

Phys. Rev. B (1)

A. Braud, S. Girard, J. L. Doualan, M. Thuau, R. Moncorge, "Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4, and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm," Phys. Rev. B 61, 5280 (2000).
[CrossRef]

Proc. SPIE (1)

S. Tanabe, "Properties of Tm3+-doped tellurite glasses for 1.4-um amplifier," Proc. SPIE 4282, 85 (2001).
[CrossRef]

Other (2)

<jrn> C. Y. Chen, R. R. Petrin, D. C. Yen, W. A. Sibley, "Concentration-dependent energy-transfer processes in Er3+- and Tm3+-doped heavy-metal fluoride glass," Opt. Letts 14, 432 (1989).</jrn>
[CrossRef]

W. J. Minisccalco, "Optical and Electronic Properties of Rare Earth Ions in Glasses," in Rare-earth-doped fiber lasers and amplifiers, M. J. F. Digonnet, ed. (Marcel Dekker, New York, 2001)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Energy level of Tm 3+, Yb 3+ and pump scheme

Fig.2 .
Fig.2 .

pectral gain of the codoped fiber

Tables (1)

Tables Icon

Table 1. Parameters used in the numerical simulations

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d N T 1 d t = N T 2 A T 21 n r + N T 3 ( W T 31 + A T 31 r ) K Y T 2 N T 1 N Y 1 N T 1 ( W T 13 + W T 14 + A T 10 r )
d N T 2 d t = N T 0 W T 02 N T 2 A T 21 n r + N T 5 A T 52 r + K Y T 1 N T 0 N Y 1
d N T 3 d t = N T 1 W T 13 + N T 4 A T 43 n r N T 3 ( W T 31 + W T 35 + A T 30 r )
d N T 4 d t = N T 1 W T 14 N T 4 A T 43 n r + K YT 2 N T 1 N Y 1
d N T 5 d t = N T 3 W T 35 N T 5 ( A T 50 r + A T 52 r )
N T = N T 0 + N T 1 + N T 2 + N T 3 + N T 4 + N T 5
d N Y 1 d t = N Y 0 W Y 01 N Y 1 W Y 10 K YT 1 N T 0 N Y 1 K YT 2 N T 1 N Y 1 N Y 1 Y 1
N Y = N Y 0 + N Y 1
W ij ( z ) = 0 λ Γ ( λ ) σ ij ( P λ + ( z , λ ) + P λ ( z , λ ) ) h c π b 2 d λ
Γ ( λ ) = 0 E ( r , φ , λ ) 2 N ( r ) r d r N 0 E ( r , φ , λ ) 2 r d r
d P ± ( λ ) d z = Γ ( λ ) P ± ( λ ) ij ( N i σ ij ( λ ) N j σ ji ( λ ) ) π Γ ( λ ) ij 2 h ν ij Δ ν N i σ ij ( λ )
σ 21 ( ν ) = σ 12 ( ν ) exp ( ε h ν kT )

Metrics