Abstract

We report on the first fabrication of a Cr-doped fiber using a drawing-tower method with Cr:YAG as the core of the preform. Both Cr3+ and Cr4+ ions coexist in the Cr-doped fiber, and the amplified spontaneous emission (ASE) spectrum shows a broadband emission of 1.2 to 1.55 µm which can not be realized by using currently available fiber amplifiers. This indicates that the new Cr-doped fibers have the potential for being used as a broadband fiber amplifier to cover the bandwidth of the entire 1.3–1.6 µm range which exhibit 300 nm usable spectral bands.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kasamatsy, Y. Yano, and H. Seller, "1.50-μm-band gain-shifted thulium-doped fiber amplifier with 1.05- and 1.56-μm dual-wavelength pumping," Opt. Lett. 24, 1684-1686 (1999).
    [CrossRef]
  2. Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G.H. Sige, Jr., "Pr3+-doped fluoride fiber amplifier operating at 1.31 μm," Opt. Lett. 16, 1747-1749 (1991).
    [CrossRef] [PubMed]
  3. M. V. Iverson, J. C. Windscheif, and W. A. Sibley, "Optical parameters for the MgO:Ni2 + laser system," Appl. Phys. Lett. 36, 183-184 (1980).
    [CrossRef]
  4. T. Suzuki and Y. Ohishi, "Broadband 1400 nm emission from Ni2+ in zinc—alumino—silicate glass," Appl. Phys. Lett. 84, 3804-3806 (2004).
    [CrossRef]
  5. S. Tanabe and X. Feng, "Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication," Appl. Phys. Lett. 77, 818-820 (2000).
    [CrossRef]
  6. C. Batchelor, W. J. Chung, S. Shen, and A. Jha, "Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses," Appl. Phys. Lett. 82, 4035-4037 (2003).
    [CrossRef]
  7. C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, "Double-clad Cr4+:YAG crystal fiber amplifier," Opt. Lett. 30, 129-131 (2005).
    [CrossRef] [PubMed]
  8. C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, "Glass-clad Cr4+ YAG crystal fiber for the generation of superwideband amplified spontaneous emission," Opt. Lett. 29, 439-441 (2004).
    [CrossRef] [PubMed]
  9. J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang, "Fluorescence mapping of oxidation state of Cr ions in YAG crystal fibers," J. Cryst. Growth 274, 522-529 (2005).
    [CrossRef]
  10. E. Snitzer and R. Tummineli, "SiO2-clad fibers with selectively volatilized soft-glass cores," Opt. Lett. 14, 757-759 (1989).
    [CrossRef] [PubMed]
  11. Cr:YAG crystal rod, Fujian JDSU CASIX Inc., Fujian, China (2005).
  12. T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, "Compositional dependence of the valency state of Cr ions in oxide glasses," J. Non-Cryst. Solids 220, 139-146 (1997).
    [CrossRef]
  13. Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, “Oxidation state and local coordination of chromiumdopant in soda-lime-silicate and calcium-aluminate glasses,” Chem. Phys. Lett. 329, 370-376 (2000).
    [CrossRef]
  14. U. Hömmerich, H. Eilers, W. M. Yen, J. S. Hayden, and M. K. Aston, "Near infrared emission at 1.35μm in Cr doped glass," J. Lumin. 60 and 61, 119-122 (1994).
    [CrossRef]

2005

C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, "Double-clad Cr4+:YAG crystal fiber amplifier," Opt. Lett. 30, 129-131 (2005).
[CrossRef] [PubMed]

J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang, "Fluorescence mapping of oxidation state of Cr ions in YAG crystal fibers," J. Cryst. Growth 274, 522-529 (2005).
[CrossRef]

2004

2003

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, "Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses," Appl. Phys. Lett. 82, 4035-4037 (2003).
[CrossRef]

2000

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, “Oxidation state and local coordination of chromiumdopant in soda-lime-silicate and calcium-aluminate glasses,” Chem. Phys. Lett. 329, 370-376 (2000).
[CrossRef]

S. Tanabe and X. Feng, "Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication," Appl. Phys. Lett. 77, 818-820 (2000).
[CrossRef]

1999

1997

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, "Compositional dependence of the valency state of Cr ions in oxide glasses," J. Non-Cryst. Solids 220, 139-146 (1997).
[CrossRef]

1994

U. Hömmerich, H. Eilers, W. M. Yen, J. S. Hayden, and M. K. Aston, "Near infrared emission at 1.35μm in Cr doped glass," J. Lumin. 60 and 61, 119-122 (1994).
[CrossRef]

1991

1989

1980

M. V. Iverson, J. C. Windscheif, and W. A. Sibley, "Optical parameters for the MgO:Ni2 + laser system," Appl. Phys. Lett. 36, 183-184 (1980).
[CrossRef]

Aston, M. K.

U. Hömmerich, H. Eilers, W. M. Yen, J. S. Hayden, and M. K. Aston, "Near infrared emission at 1.35μm in Cr doped glass," J. Lumin. 60 and 61, 119-122 (1994).
[CrossRef]

Batchelor, C.

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, "Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses," Appl. Phys. Lett. 82, 4035-4037 (2003).
[CrossRef]

Chen, J. C.

Choi, Y. G.

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, “Oxidation state and local coordination of chromiumdopant in soda-lime-silicate and calcium-aluminate glasses,” Chem. Phys. Lett. 329, 370-376 (2000).
[CrossRef]

Chuang, C. Y.

Chung, W. J.

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, "Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses," Appl. Phys. Lett. 82, 4035-4037 (2003).
[CrossRef]

Eilers, H..

U. Hömmerich, H. Eilers, W. M. Yen, J. S. Hayden, and M. K. Aston, "Near infrared emission at 1.35μm in Cr doped glass," J. Lumin. 60 and 61, 119-122 (1994).
[CrossRef]

Feng, X.

S. Tanabe and X. Feng, "Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication," Appl. Phys. Lett. 77, 818-820 (2000).
[CrossRef]

Han, Y. S.

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, “Oxidation state and local coordination of chromiumdopant in soda-lime-silicate and calcium-aluminate glasses,” Chem. Phys. Lett. 329, 370-376 (2000).
[CrossRef]

Hayden, J. S.

U. Hömmerich, H. Eilers, W. M. Yen, J. S. Hayden, and M. K. Aston, "Near infrared emission at 1.35μm in Cr doped glass," J. Lumin. 60 and 61, 119-122 (1994).
[CrossRef]

Heo, J.

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, “Oxidation state and local coordination of chromiumdopant in soda-lime-silicate and calcium-aluminate glasses,” Chem. Phys. Lett. 329, 370-376 (2000).
[CrossRef]

Hömmerich, U.

U. Hömmerich, H. Eilers, W. M. Yen, J. S. Hayden, and M. K. Aston, "Near infrared emission at 1.35μm in Cr doped glass," J. Lumin. 60 and 61, 119-122 (1994).
[CrossRef]

Huang, K. Y.

Huang, S. L.

Iverson, M. V.

M. V. Iverson, J. C. Windscheif, and W. A. Sibley, "Optical parameters for the MgO:Ni2 + laser system," Appl. Phys. Lett. 36, 183-184 (1980).
[CrossRef]

Jha, A.

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, "Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses," Appl. Phys. Lett. 82, 4035-4037 (2003).
[CrossRef]

Kanamori, T.

Kao, F. J.

J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang, "Fluorescence mapping of oxidation state of Cr ions in YAG crystal fibers," J. Cryst. Growth 274, 522-529 (2005).
[CrossRef]

Kasamatsy, T.

Kim, K. H.

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, “Oxidation state and local coordination of chromiumdopant in soda-lime-silicate and calcium-aluminate glasses,” Chem. Phys. Lett. 329, 370-376 (2000).
[CrossRef]

Kitagawa, T.

Lai, C. C.

Lin, Y. S.

Lo, C. Y.

Morinaga, K.

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, "Compositional dependence of the valency state of Cr ions in oxide glasses," J. Non-Cryst. Solids 220, 139-146 (1997).
[CrossRef]

Murata, T.

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, "Compositional dependence of the valency state of Cr ions in oxide glasses," J. Non-Cryst. Solids 220, 139-146 (1997).
[CrossRef]

Ohishi, Y.

T. Suzuki and Y. Ohishi, "Broadband 1400 nm emission from Ni2+ in zinc—alumino—silicate glass," Appl. Phys. Lett. 84, 3804-3806 (2004).
[CrossRef]

Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G.H. Sige, Jr., "Pr3+-doped fluoride fiber amplifier operating at 1.31 μm," Opt. Lett. 16, 1747-1749 (1991).
[CrossRef] [PubMed]

Seller, H.

Shen, S.

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, "Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses," Appl. Phys. Lett. 82, 4035-4037 (2003).
[CrossRef]

Sibley, W. A.

M. V. Iverson, J. C. Windscheif, and W. A. Sibley, "Optical parameters for the MgO:Ni2 + laser system," Appl. Phys. Lett. 36, 183-184 (1980).
[CrossRef]

Sige, G.H.

Snitzer, E.

Suzuki, T.

T. Suzuki and Y. Ohishi, "Broadband 1400 nm emission from Ni2+ in zinc—alumino—silicate glass," Appl. Phys. Lett. 84, 3804-3806 (2004).
[CrossRef]

Takahashi, S.

Takebe, H.

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, "Compositional dependence of the valency state of Cr ions in oxide glasses," J. Non-Cryst. Solids 220, 139-146 (1997).
[CrossRef]

Tanabe, S.

S. Tanabe and X. Feng, "Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication," Appl. Phys. Lett. 77, 818-820 (2000).
[CrossRef]

Torisaka, M.

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, "Compositional dependence of the valency state of Cr ions in oxide glasses," J. Non-Cryst. Solids 220, 139-146 (1997).
[CrossRef]

Tu, S. Y.

J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang, "Fluorescence mapping of oxidation state of Cr ions in YAG crystal fibers," J. Cryst. Growth 274, 522-529 (2005).
[CrossRef]

C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, "Glass-clad Cr4+ YAG crystal fiber for the generation of superwideband amplified spontaneous emission," Opt. Lett. 29, 439-441 (2004).
[CrossRef] [PubMed]

Tummineli, R.

Windscheif, J. C.

M. V. Iverson, J. C. Windscheif, and W. A. Sibley, "Optical parameters for the MgO:Ni2 + laser system," Appl. Phys. Lett. 36, 183-184 (1980).
[CrossRef]

Yano, Y.

Yeh, P. S.

Yen, W. M.

U. Hömmerich, H. Eilers, W. M. Yen, J. S. Hayden, and M. K. Aston, "Near infrared emission at 1.35μm in Cr doped glass," J. Lumin. 60 and 61, 119-122 (1994).
[CrossRef]

Appl. Phys. Lett.

M. V. Iverson, J. C. Windscheif, and W. A. Sibley, "Optical parameters for the MgO:Ni2 + laser system," Appl. Phys. Lett. 36, 183-184 (1980).
[CrossRef]

T. Suzuki and Y. Ohishi, "Broadband 1400 nm emission from Ni2+ in zinc—alumino—silicate glass," Appl. Phys. Lett. 84, 3804-3806 (2004).
[CrossRef]

S. Tanabe and X. Feng, "Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication," Appl. Phys. Lett. 77, 818-820 (2000).
[CrossRef]

C. Batchelor, W. J. Chung, S. Shen, and A. Jha, "Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses," Appl. Phys. Lett. 82, 4035-4037 (2003).
[CrossRef]

Chem. Phys. Lett.

Y. G. Choi, K. H. Kim, Y. S. Han, and J. Heo, “Oxidation state and local coordination of chromiumdopant in soda-lime-silicate and calcium-aluminate glasses,” Chem. Phys. Lett. 329, 370-376 (2000).
[CrossRef]

J. Cryst. Growth

J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang, "Fluorescence mapping of oxidation state of Cr ions in YAG crystal fibers," J. Cryst. Growth 274, 522-529 (2005).
[CrossRef]

J. Lumin.

U. Hömmerich, H. Eilers, W. M. Yen, J. S. Hayden, and M. K. Aston, "Near infrared emission at 1.35μm in Cr doped glass," J. Lumin. 60 and 61, 119-122 (1994).
[CrossRef]

J. Non-Cryst. Solids

T. Murata, M. Torisaka, H. Takebe, and K. Morinaga, "Compositional dependence of the valency state of Cr ions in oxide glasses," J. Non-Cryst. Solids 220, 139-146 (1997).
[CrossRef]

Opt. Lett.

Other

Cr:YAG crystal rod, Fujian JDSU CASIX Inc., Fujian, China (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) A schematic diagram of a Cr4+-doped YAG preform and (b) a photo of a fabricated Cr4+-doped YAG preform.

Fig. 2.
Fig. 2.

(a) Photograph of the cleaved end with a 9-µm-diameter core and (b) the refractive index profile of the Cr-doped fiber.

Fig. 3.
Fig. 3.

(a) The fluorescence spectrum of the Cr-doped fibers, and the ASE spectra of the Cr-doped fibers through (b) 6.1-cm length and (c) 8.3-cm length.

Fig. 4.
Fig. 4.

The far-field pattern of the Cr-doped fiber.

Fig. 5.
Fig. 5.

The transmission loss of the Cr-doped fiber.

Tables (1)

Tables Icon

Table 1. The material properties of Cr4+:YAG and SiO2.

Metrics