Abstract

A thin-film Fabry–Perot filter (FPF) was designed and fabricated to achieve the superprism effect. A polychromatic light, tuned at various incident angles onto the device, was used to attain more demultiplexing channels. This indicates that the FPF, which can be fabricated simply and inexpensively, can be used as a tunable demultiplexing device. Further, the transfer matrix method (TMM) and the Gaussian angular spectrum method were introduced to calculate a more-accurate spatial shift at different wavelengths and to analyze the beam-splitting phenomena in the FPF.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. MacLeod, Thin-Film Optical Filters, 2nd ed. (Adam Hilger Ltd, 1986).
    [CrossRef]
  2. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis, (John Wiley & Sons, Inc., 1999).
    [CrossRef]
  3. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution," Electron. Lett. 26,87-88 (1990).
    [CrossRef]
  4. B. Gralak, S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic crystals," J. Opt. Soc. Am. A 17,1012-1020, (2000).
    [CrossRef]
  5. H. Kosaka, T. Kawashima, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
    [CrossRef]
  6. L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002).
    [CrossRef]
  7. T. Baba and M. Nakamura, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
    [CrossRef]
  8. K. B. Chung and S. W. Hong, "Wavelength demultiplexers based on the superprism phenomena in photonic crystals," Appl. Phys. Lett. 81, 1549-1551(2002).
    [CrossRef]
  9. H. X. Chen, P. F. Gu, W. G. Lv, B. Jin, H. F. Li and X. Liu, "Superprism effect in thin film Fabry-Perot filter," Acta Opt. Sin. 25, 157-160 (2006).
  10. X. Z. Sun, P. F. Gu, H. X. Chen, B. Jin, H. F. Li and X. Liu, "Study on superprism effect in the multilayer optical thin film stack," J. Soc. Opt. Precis. Eng. 13, 454-458 (2005).
  11. M. Gerken and D. A. B. Miller, "Multilayer thin film structures with high spatial dispersion," Appl. Opt. 42, 1330-1344 (2003).
    [CrossRef] [PubMed]
  12. M. Gerken and D. A.B. Miller, "Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures," IEEE Photon. Technol. Lett. 15, 1097-1099 (2003).
    [CrossRef]
  13. J. A. Kong, B. L. Wu, and Y. Zhang, "A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability," Microwave Opt. Technol. Lett. 33, 136-139 (2002).
    [CrossRef]
  14. K. Choi, H. Kim, Y. Lim, S. Kim and B. Lee, "Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam," Opt. Express 13, 8866-88742005).
    [CrossRef] [PubMed]

2006 (1)

H. X. Chen, P. F. Gu, W. G. Lv, B. Jin, H. F. Li and X. Liu, "Superprism effect in thin film Fabry-Perot filter," Acta Opt. Sin. 25, 157-160 (2006).

2005 (2)

X. Z. Sun, P. F. Gu, H. X. Chen, B. Jin, H. F. Li and X. Liu, "Study on superprism effect in the multilayer optical thin film stack," J. Soc. Opt. Precis. Eng. 13, 454-458 (2005).

K. Choi, H. Kim, Y. Lim, S. Kim and B. Lee, "Analytic design and visualization of multiple surface plasmon resonance excitation using angular spectrum decomposition for a Gaussian input beam," Opt. Express 13, 8866-88742005).
[CrossRef] [PubMed]

2003 (2)

M. Gerken and D. A. B. Miller, "Multilayer thin film structures with high spatial dispersion," Appl. Opt. 42, 1330-1344 (2003).
[CrossRef] [PubMed]

M. Gerken and D. A.B. Miller, "Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures," IEEE Photon. Technol. Lett. 15, 1097-1099 (2003).
[CrossRef]

2002 (4)

J. A. Kong, B. L. Wu, and Y. Zhang, "A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability," Microwave Opt. Technol. Lett. 33, 136-139 (2002).
[CrossRef]

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002).
[CrossRef]

T. Baba and M. Nakamura, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

K. B. Chung and S. W. Hong, "Wavelength demultiplexers based on the superprism phenomena in photonic crystals," Appl. Phys. Lett. 81, 1549-1551(2002).
[CrossRef]

2000 (1)

1998 (1)

H. Kosaka, T. Kawashima, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

1990 (1)

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution," Electron. Lett. 26,87-88 (1990).
[CrossRef]

Baba, T.

T. Baba and M. Nakamura, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

Chen, H. X.

H. X. Chen, P. F. Gu, W. G. Lv, B. Jin, H. F. Li and X. Liu, "Superprism effect in thin film Fabry-Perot filter," Acta Opt. Sin. 25, 157-160 (2006).

X. Z. Sun, P. F. Gu, H. X. Chen, B. Jin, H. F. Li and X. Liu, "Study on superprism effect in the multilayer optical thin film stack," J. Soc. Opt. Precis. Eng. 13, 454-458 (2005).

Choi, K.

Chung, K. B.

K. B. Chung and S. W. Hong, "Wavelength demultiplexers based on the superprism phenomena in photonic crystals," Appl. Phys. Lett. 81, 1549-1551(2002).
[CrossRef]

Enoch, S.

Gerken, M.

M. Gerken and D. A. B. Miller, "Multilayer thin film structures with high spatial dispersion," Appl. Opt. 42, 1330-1344 (2003).
[CrossRef] [PubMed]

M. Gerken and D. A.B. Miller, "Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures," IEEE Photon. Technol. Lett. 15, 1097-1099 (2003).
[CrossRef]

Gralak, B.

Gu, P. F.

H. X. Chen, P. F. Gu, W. G. Lv, B. Jin, H. F. Li and X. Liu, "Superprism effect in thin film Fabry-Perot filter," Acta Opt. Sin. 25, 157-160 (2006).

X. Z. Sun, P. F. Gu, H. X. Chen, B. Jin, H. F. Li and X. Liu, "Study on superprism effect in the multilayer optical thin film stack," J. Soc. Opt. Precis. Eng. 13, 454-458 (2005).

Hong, S. W.

K. B. Chung and S. W. Hong, "Wavelength demultiplexers based on the superprism phenomena in photonic crystals," Appl. Phys. Lett. 81, 1549-1551(2002).
[CrossRef]

Jin, B.

H. X. Chen, P. F. Gu, W. G. Lv, B. Jin, H. F. Li and X. Liu, "Superprism effect in thin film Fabry-Perot filter," Acta Opt. Sin. 25, 157-160 (2006).

X. Z. Sun, P. F. Gu, H. X. Chen, B. Jin, H. F. Li and X. Liu, "Study on superprism effect in the multilayer optical thin film stack," J. Soc. Opt. Precis. Eng. 13, 454-458 (2005).

Karle, T.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002).
[CrossRef]

Kato, K.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution," Electron. Lett. 26,87-88 (1990).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Kim, H.

Kim, S.

Kong, J. A.

J. A. Kong, B. L. Wu, and Y. Zhang, "A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability," Microwave Opt. Technol. Lett. 33, 136-139 (2002).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Krauss, T. F.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002).
[CrossRef]

Lee, B.

Li, H. F.

H. X. Chen, P. F. Gu, W. G. Lv, B. Jin, H. F. Li and X. Liu, "Superprism effect in thin film Fabry-Perot filter," Acta Opt. Sin. 25, 157-160 (2006).

X. Z. Sun, P. F. Gu, H. X. Chen, B. Jin, H. F. Li and X. Liu, "Study on superprism effect in the multilayer optical thin film stack," J. Soc. Opt. Precis. Eng. 13, 454-458 (2005).

Lim, Y.

Liu, X.

H. X. Chen, P. F. Gu, W. G. Lv, B. Jin, H. F. Li and X. Liu, "Superprism effect in thin film Fabry-Perot filter," Acta Opt. Sin. 25, 157-160 (2006).

X. Z. Sun, P. F. Gu, H. X. Chen, B. Jin, H. F. Li and X. Liu, "Study on superprism effect in the multilayer optical thin film stack," J. Soc. Opt. Precis. Eng. 13, 454-458 (2005).

Lv, W. G.

H. X. Chen, P. F. Gu, W. G. Lv, B. Jin, H. F. Li and X. Liu, "Superprism effect in thin film Fabry-Perot filter," Acta Opt. Sin. 25, 157-160 (2006).

Mazilu, M.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002).
[CrossRef]

Miller, D. A. B.

Miller, D. A.B.

M. Gerken and D. A.B. Miller, "Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures," IEEE Photon. Technol. Lett. 15, 1097-1099 (2003).
[CrossRef]

Nakamura, M.

T. Baba and M. Nakamura, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

Nishi, I.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution," Electron. Lett. 26,87-88 (1990).
[CrossRef]

Notomi, M.

H. Kosaka, T. Kawashima, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Sato, T.

H. Kosaka, T. Kawashima, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Sun, X. Z.

X. Z. Sun, P. F. Gu, H. X. Chen, B. Jin, H. F. Li and X. Liu, "Study on superprism effect in the multilayer optical thin film stack," J. Soc. Opt. Precis. Eng. 13, 454-458 (2005).

Suzuki, S.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution," Electron. Lett. 26,87-88 (1990).
[CrossRef]

Takahashi, H.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution," Electron. Lett. 26,87-88 (1990).
[CrossRef]

Tamamura, T.

H. Kosaka, T. Kawashima, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Tayeb, G.

Wu, B. L.

J. A. Kong, B. L. Wu, and Y. Zhang, "A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability," Microwave Opt. Technol. Lett. 33, 136-139 (2002).
[CrossRef]

Wu, L.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002).
[CrossRef]

Zhang, Y.

J. A. Kong, B. L. Wu, and Y. Zhang, "A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability," Microwave Opt. Technol. Lett. 33, 136-139 (2002).
[CrossRef]

Acta Opt. Sin. (1)

H. X. Chen, P. F. Gu, W. G. Lv, B. Jin, H. F. Li and X. Liu, "Superprism effect in thin film Fabry-Perot filter," Acta Opt. Sin. 25, 157-160 (2006).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. B. Chung and S. W. Hong, "Wavelength demultiplexers based on the superprism phenomena in photonic crystals," Appl. Phys. Lett. 81, 1549-1551(2002).
[CrossRef]

Electron. Lett. (1)

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, "Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution," Electron. Lett. 26,87-88 (1990).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002).
[CrossRef]

T. Baba and M. Nakamura, "Photonic crystal light deflection devices using the superprism effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Gerken and D. A.B. Miller, "Wavelength demultiplexer using the spatial dispersion of multilayer thin-film structures," IEEE Photon. Technol. Lett. 15, 1097-1099 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Soc. Opt. Precis. Eng. (1)

X. Z. Sun, P. F. Gu, H. X. Chen, B. Jin, H. F. Li and X. Liu, "Study on superprism effect in the multilayer optical thin film stack," J. Soc. Opt. Precis. Eng. 13, 454-458 (2005).

Microwave Opt. Technol. Lett. (1)

J. A. Kong, B. L. Wu, and Y. Zhang, "A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability," Microwave Opt. Technol. Lett. 33, 136-139 (2002).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

H. Kosaka, T. Kawashima, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10096-10099 (1998).
[CrossRef]

Other (2)

H. A. MacLeod, Thin-Film Optical Filters, 2nd ed. (Adam Hilger Ltd, 1986).
[CrossRef]

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis, (John Wiley & Sons, Inc., 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Sketch of multilayer thin film.

Fig. 2.
Fig. 2.

(a) Setup for the measurement of superprism effect. (b) Calculation of spatial shift.

Fig. 3.
Fig. 3.

(a) Output light spots for θi =55.2° at different wavelengths. (b) Comparison between the measured shift curve (solid) and the theoretically simulated curve (dashed) for different wavelengths.

Fig. 4.
Fig. 4.

Comparison between the measured shift curve (solid) and the theoretically simulated curve (dashed) for (a) θi =50.8° and (b) θi =44.6° at different wavelength.

Fig. 5.
Fig. 5.

Demultiplexing application of FPF.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E iy = d k x exp [ i ( k x x + k z z ) ] ψ ( k x ) ,
E jy = d k x [ A j exp ( i k jz z ) + B j exp ( i k jz z ) ] exp ( i k x x ) ψ ( k x ) ,
[ A j B j ] = M j ( j + 1 ) [ A j + 1 B j + 1 ] ,
M j ( j + 1 ) = 1 2 [ ( 1 + p j ( j + 1 ) ) exp [ i ( k jz + k ( j + 1 ) z ) d j ] ( 1 p j ( j + 1 ) exp [ i ( k jz + k ( j + 1 ) z ) d j ] ( 1 p j ( j + 1 ) ) exp [ i ( k jz + k ( j + 1 ) z ) d j ] ( 1 p j ( j + 1 ) exp [ i ( k jz k ( j + 1 ) z ) d j ] ]
p j ( j + 1 ) = ε j k ( j + 1 ) z ε ( j + 1 ) k jz .
[ A 0 1 ] = M 0 m + 1 [ 0 B m + 1 ] ,

Metrics