Abstract

A new, simple, technique is demonstrated to laterally access the cladding holes of solid-core photonic crystal fibers (PCFs) or the central hole of hollow-core PCFs by blowing a hole through the fiber wall (using a fusion splicer and the application of pressure). For both fiber types material was subsequently and successfully inserted into the holes. The proposed method compares favorably with other reported selective filling techniques in terms of simplicity and reproducibility. Also, since the holes are laterally filled, simultaneous optical access to the PCFs is possible, which can prove useful for practical sensing applications. As a proof-of-concept experiment, Rhodamine fluorescence measurements are shown.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  2. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  3. J. K. Ranka, R. S. Windeler, A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000).
    [CrossRef]
  4. T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibers for evanescent field devices," Electron. Lett. 35, 1188-1189 (1999).
    [CrossRef]
  5. J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
    [CrossRef]
  6. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
    [CrossRef] [PubMed]
  7. C. J. S. de Matos, A. B. Rulkov, S. V. Popov, J. R. Taylor, J. Broeng, T. P. Hansen, and V. P. Gapontsev, "All-fibre format compression of frequency chirped pulses in air-guiding photonic crystal fibers," Phys. Rev. Lett. 93, 103901 (2004).
    [CrossRef] [PubMed]
  8. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  9. P. J. Wiejata, P. M. Shankar, and R. Mutharasan, "Fluorescent sensing using biconical tapers," Sens. Actuators B 96, 315-320 (2003).
    [CrossRef]
  10. B. Culshaw and J. Dakin, Optical fiber sensors (Artech House, 1996).
  11. E. P. Ippen, C. V. Shank, and T. K. Gustafson, "Self-phase modulation of picosecond pulses in optical fibers," Appl. Phys. Lett. 24, 190-192 (1974).
    [CrossRef]
  12. P. Dress and H. Franke, "A cylindrical liquid-core waveguide," Appl. Phys. B 63, 12-19 (1996).
    [CrossRef]
  13. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. -L. Auguste, and J. -M. Blondy, "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13, 4786-4791 (2005).
    [CrossRef] [PubMed]
  14. Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
    [CrossRef]
  15. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
    [CrossRef]
  16. L. Xiao, W. Jin, M. Demokan, H. Ho, Y. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005).
    [CrossRef] [PubMed]
  17. H. Lehmann, S. Brückner, J. Kobelke, G. Schwotzer, K. Schuster, R. Willsch, "Toward photonic crystal fiber based distributed chemosensors," 17th International Conference on Optical Fibre Sensors, SPIE 5855, 419-422 (2005)
    [CrossRef]
  18. M. J. Weber, Handbook of Optical Materials (CRC Press, 2003), Chap. 5.
  19. C. C. Davis, Lasers and Electro-Optics: Fundamentals and Engineering (Cambridge University Press, 1996), Chaps. 2 and 12.

2005 (3)

2004 (4)

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
[CrossRef] [PubMed]

C. J. S. de Matos, A. B. Rulkov, S. V. Popov, J. R. Taylor, J. Broeng, T. P. Hansen, and V. P. Gapontsev, "All-fibre format compression of frequency chirped pulses in air-guiding photonic crystal fibers," Phys. Rev. Lett. 93, 103901 (2004).
[CrossRef] [PubMed]

2003 (3)

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, "Fluorescent sensing using biconical tapers," Sens. Actuators B 96, 315-320 (2003).
[CrossRef]

2000 (1)

1999 (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibers for evanescent field devices," Electron. Lett. 35, 1188-1189 (1999).
[CrossRef]

1996 (2)

1974 (1)

E. P. Ippen, C. V. Shank, and T. K. Gustafson, "Self-phase modulation of picosecond pulses in optical fibers," Appl. Phys. Lett. 24, 190-192 (1974).
[CrossRef]

Atkin, D. M.

Auguste, J. -L.

Bennett, P. J.

T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibers for evanescent field devices," Electron. Lett. 35, 1188-1189 (1999).
[CrossRef]

Birks, T. A.

Bjarklev, A.

Blondy, J. -M.

Broeng, J.

C. J. S. de Matos, A. B. Rulkov, S. V. Popov, J. R. Taylor, J. Broeng, T. P. Hansen, and V. P. Gapontsev, "All-fibre format compression of frequency chirped pulses in air-guiding photonic crystal fibers," Phys. Rev. Lett. 93, 103901 (2004).
[CrossRef] [PubMed]

Carlsen, A.

Chinaud, J.

de Matos, C. J. S.

C. J. S. de Matos, A. B. Rulkov, S. V. Popov, J. R. Taylor, J. Broeng, T. P. Hansen, and V. P. Gapontsev, "All-fibre format compression of frequency chirped pulses in air-guiding photonic crystal fibers," Phys. Rev. Lett. 93, 103901 (2004).
[CrossRef] [PubMed]

Delaye, P.

Demokan, M.

Dress, P.

P. Dress and H. Franke, "A cylindrical liquid-core waveguide," Appl. Phys. B 63, 12-19 (1996).
[CrossRef]

Février, S.

Fini, J. M.

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Folkenberg, J. R.

Franke, H.

P. Dress and H. Franke, "A cylindrical liquid-core waveguide," Appl. Phys. B 63, 12-19 (1996).
[CrossRef]

Frey, R.

Gapontsev, V. P.

C. J. S. de Matos, A. B. Rulkov, S. V. Popov, J. R. Taylor, J. Broeng, T. P. Hansen, and V. P. Gapontsev, "All-fibre format compression of frequency chirped pulses in air-guiding photonic crystal fibers," Phys. Rev. Lett. 93, 103901 (2004).
[CrossRef] [PubMed]

Gustafson, T. K.

E. P. Ippen, C. V. Shank, and T. K. Gustafson, "Self-phase modulation of picosecond pulses in optical fibers," Appl. Phys. Lett. 24, 190-192 (1974).
[CrossRef]

Hansen, T. P.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

C. J. S. de Matos, A. B. Rulkov, S. V. Popov, J. R. Taylor, J. Broeng, T. P. Hansen, and V. P. Gapontsev, "All-fibre format compression of frequency chirped pulses in air-guiding photonic crystal fibers," Phys. Rev. Lett. 93, 103901 (2004).
[CrossRef] [PubMed]

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
[CrossRef] [PubMed]

Ho, H.

Hoiby, P. E.

Hoo, Y.

Huang, Y.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Ippen, E. P.

E. P. Ippen, C. V. Shank, and T. K. Gustafson, "Self-phase modulation of picosecond pulses in optical fibers," Appl. Phys. Lett. 24, 190-192 (1974).
[CrossRef]

Jensen, J. B.

Jin, W.

Knight, J. C.

Monro, T. M.

T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibers for evanescent field devices," Electron. Lett. 35, 1188-1189 (1999).
[CrossRef]

Mutharasan, R.

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, "Fluorescent sensing using biconical tapers," Sens. Actuators B 96, 315-320 (2003).
[CrossRef]

Nielsen, K.

Nielsen, L. B.

Noordegraaf, D.

Pedersen, L. H.

Popov, S. V.

C. J. S. de Matos, A. B. Rulkov, S. V. Popov, J. R. Taylor, J. Broeng, T. P. Hansen, and V. P. Gapontsev, "All-fibre format compression of frequency chirped pulses in air-guiding photonic crystal fibers," Phys. Rev. Lett. 93, 103901 (2004).
[CrossRef] [PubMed]

Ranka, J. K.

Richardson, D. J.

T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibers for evanescent field devices," Electron. Lett. 35, 1188-1189 (1999).
[CrossRef]

Riishede, J.

Roosen, G.

Rouvie, A.

Roy, P.

Rulkov, A. B.

C. J. S. de Matos, A. B. Rulkov, S. V. Popov, J. R. Taylor, J. Broeng, T. P. Hansen, and V. P. Gapontsev, "All-fibre format compression of frequency chirped pulses in air-guiding photonic crystal fibers," Phys. Rev. Lett. 93, 103901 (2004).
[CrossRef] [PubMed]

Russell, P.

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Russell, P. S.

Shank, C. V.

E. P. Ippen, C. V. Shank, and T. K. Gustafson, "Self-phase modulation of picosecond pulses in optical fibers," Appl. Phys. Lett. 24, 190-192 (1974).
[CrossRef]

Shankar, P. M.

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, "Fluorescent sensing using biconical tapers," Sens. Actuators B 96, 315-320 (2003).
[CrossRef]

Sørensen, T.

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

Stentz, A. J.

Taylor, J. R.

C. J. S. de Matos, A. B. Rulkov, S. V. Popov, J. R. Taylor, J. Broeng, T. P. Hansen, and V. P. Gapontsev, "All-fibre format compression of frequency chirped pulses in air-guiding photonic crystal fibers," Phys. Rev. Lett. 93, 103901 (2004).
[CrossRef] [PubMed]

Viale, P.

Wiejata, P. J.

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, "Fluorescent sensing using biconical tapers," Sens. Actuators B 96, 315-320 (2003).
[CrossRef]

Windeler, R. S.

Xiao, L.

Xu, Y.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Yariv, A.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Yiou, S.

Zhao, C.

Appl. Phys. B (1)

P. Dress and H. Franke, "A cylindrical liquid-core waveguide," Appl. Phys. B 63, 12-19 (1996).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional microstructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

E. P. Ippen, C. V. Shank, and T. K. Gustafson, "Self-phase modulation of picosecond pulses in optical fibers," Appl. Phys. Lett. 24, 190-192 (1974).
[CrossRef]

Electron. Lett. (1)

T. M. Monro, D. J. Richardson, and P. J. Bennett, "Developing holey fibers for evanescent field devices," Electron. Lett. 35, 1188-1189 (1999).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Nature (1)

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

C. J. S. de Matos, A. B. Rulkov, S. V. Popov, J. R. Taylor, J. Broeng, T. P. Hansen, and V. P. Gapontsev, "All-fibre format compression of frequency chirped pulses in air-guiding photonic crystal fibers," Phys. Rev. Lett. 93, 103901 (2004).
[CrossRef] [PubMed]

Science (1)

P. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Sens. Actuators B (1)

P. J. Wiejata, P. M. Shankar, and R. Mutharasan, "Fluorescent sensing using biconical tapers," Sens. Actuators B 96, 315-320 (2003).
[CrossRef]

Other (4)

B. Culshaw and J. Dakin, Optical fiber sensors (Artech House, 1996).

H. Lehmann, S. Brückner, J. Kobelke, G. Schwotzer, K. Schuster, R. Willsch, "Toward photonic crystal fiber based distributed chemosensors," 17th International Conference on Optical Fibre Sensors, SPIE 5855, 419-422 (2005)
[CrossRef]

M. J. Weber, Handbook of Optical Materials (CRC Press, 2003), Chap. 5.

C. C. Davis, Lasers and Electro-Optics: Fundamentals and Engineering (Cambridge University Press, 1996), Chaps. 2 and 12.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Scanning electron microscope images of the hollow- (a) and solid-core (b) PCFs used.

Fig. 2.
Fig. 2.

Optical microscope longitudinal images of a solid-core PCF showing front (a) and side (b) views of the fabricated lateral hole. The white bar is 100 μm wide.

Fig. 3.
Fig. 3.

(a) Schematic diagram showing the three steps to opening the side hole in a hollow-core PCF. Optical microscope images of the steps 1, 2, and 3 are shown in (b), (c), and (d) respectively. White bars are 100 μm wide.

Fig. 4.
Fig. 4.

Longitudinal (a) and cross-sectional (b) optical microscope images of hollow-core PCFs with expanded, but not laterally opened, cores. White bars are 100 μm (a) and 20 μm (b) wide.

Fig. 5.
Fig. 5.

Cross-sectional optical microscope images of a hollow-core PCF (a) and of a solid-core PCF (b) with holes laterally filled with polymer. White bars are 20 μm (a) and 50 μm (b) wide.

Fig. 6.
Fig. 6.

Simulated normalized intensity profiles (in decibels) of the fundamental modes for the ethylene glycol filled HC-PCF (a) and SC-PCF (b). In (b) solely the top-most hole next to the core is filled.

Fig. 7.
Fig. 7.

(a) A possible setup to insert liquids into the core of a HC-PCF and to optically access it simultaneously – this setup is also suitable for SC-PCFs; (b) alternative method to insert liquids into SC-PCFs.

Fig. 8.
Fig. 8.

Rhodamine fluorescence spectra obtained with a HC-PCF with (a) and without (b) the side hole and obtained with a SC-PCF with (c) and without (d) the side hole.

Metrics