Abstract

Photosensitive sol-gel hybrid (SGH) materials exhibited the peculiar photoinduced migration behavior of unreacted molecules from unexposed areas to exposed areas by selective UV exposure. Using the photoinduced migration mechanism of the photosensitive SGH materials, the microlens array (MLA) with a smooth surface was directly photofabricated, and the focal length was controlled by changing the photoinduced migration parameters. The higher photoactive monomer content and the thicker film creating a higher curvature produced a smaller focal length of the MLA. Thus, a simple fabrication and easy control of the focal length can be applicable to a fabrication of an efficient MLA.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. N. Tang, T. Li, F. M. Li, C. Zhou, and R. T. Chen, "A holographic waveguide microlens array for surface-normal optical interconnects," IEEE Photon. Technol. Lett. 8, 1498-1500 (1996).
    [CrossRef]
  2. T. Huang and K. H. Wagner, "Guided-wave microlens array applications to compact 1x8 planar waveguide splitters," Microwave and Opt. Technol. Lett. 43, 29-33 (2004).
    [CrossRef]
  3. X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass," Appl. Phys. Lett. 86, 114102 (2005).
    [CrossRef]
  4. Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal," Opt. Mater. 21, 643-646 (2003).
    [CrossRef]
  5. M. Agarwall, R.A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," J. Micromech. Microeng. 14, 1665-1673 (2004).
    [CrossRef]
  6. X. Y. Zhang, Q. L. Tang, X. J. Yi, Z. Zhang, and X. D. Pei, "Cylindrical microlens array fabricated by argon ion-beam etching," Opt. Eng. 39, 3001-3007 (2000).
    [CrossRef]
  7. Y. Q. Fu, and B. K. A. Ngoi, "Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology," Opt. Eng. 40, 511-516 (2001).
    [CrossRef]
  8. R. R. A. Syms, "Refractive collimating microlens arrays by surface tension self-assembly," IEEE Photon. Technol. Lett. 12, 1507-1508 (2000).
    [CrossRef]
  9. S. K. Lee, K. C. Lee, and S. S. Lee, "A simple method for microlens fabrication by the modified LIGA process," J. Micromech. Microeng. 12, 334-340 (2002).
    [CrossRef]
  10. R. Danzebrink, and M. A. Aegerter, "Deposition of micropatterned coating using an ink-jet technique," Thin Solid Films 351, 115-118 (1999).
    [CrossRef]
  11. T. K. Shin, J. R. Ho, and J. W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
    [CrossRef]
  12. A. Annapoorna, H. Tokuyuki, Y. L. Alice, and H. Lambertus, "Two-photon holographic recording in aluminosilicate glass containing silver particles," Opt. Lett. 22, 967-969 (1997).
    [CrossRef]
  13. T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, "Optical Photopolymers: Design and Applications," Adv. Mater. 10, 1219-1224 (1998).
    [CrossRef]
  14. D. J. Kang, J. U. Park, B. S. Bae, J. Nishii, and K. Kintaka, "Single-Step Photo Patterning of Diffraction Gratings in Highly Photosensitive Hybrid Gel Films," Opt. Express 11, 1144-1148 (2003).
    [CrossRef] [PubMed]
  15. D. J. Kang, J. K. Kim, and B. S. Bae, "Simple fabrication of diffraction gratings by two-beam interference method in highly photosensitive hybrid sol-gel films," Opt. Express 11,3947-3953 (2004).
    [CrossRef]
  16. D. J. Kang, P. V. Phong, and B. S. Bae, "Fabrication of high-efficiency Fresnel-type lenses by pinhole diffraction imaging of sol-gel hybrid materials," Appl. Phys. Lett. 85, 4289-4291 (2004).
    [CrossRef]
  17. M. He, X. Yuan, J. Bu, C. W. Tan, "A high-corrugation-rate self-processing SiO2-ZrO2 hybrid sol-gel material for fabrication of microlens array," IEEE Photon. Technol. Lett. 17, 1223-1225 (2005).
    [CrossRef]
  18. D. J. Kang, W. S. Kim and B. S. Bae, "Direct Photofabrication of Refractive-index-modulated Multimode Optical Waveguide Using Photosensitive Sol-gel Hybrid Materials," Appl. Phys. Lett. 87, 221106 1-3 (2005).
    [CrossRef]

2005

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass," Appl. Phys. Lett. 86, 114102 (2005).
[CrossRef]

M. He, X. Yuan, J. Bu, C. W. Tan, "A high-corrugation-rate self-processing SiO2-ZrO2 hybrid sol-gel material for fabrication of microlens array," IEEE Photon. Technol. Lett. 17, 1223-1225 (2005).
[CrossRef]

2004

T. Huang and K. H. Wagner, "Guided-wave microlens array applications to compact 1x8 planar waveguide splitters," Microwave and Opt. Technol. Lett. 43, 29-33 (2004).
[CrossRef]

M. Agarwall, R.A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

T. K. Shin, J. R. Ho, and J. W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
[CrossRef]

D. J. Kang, J. K. Kim, and B. S. Bae, "Simple fabrication of diffraction gratings by two-beam interference method in highly photosensitive hybrid sol-gel films," Opt. Express 11,3947-3953 (2004).
[CrossRef]

D. J. Kang, P. V. Phong, and B. S. Bae, "Fabrication of high-efficiency Fresnel-type lenses by pinhole diffraction imaging of sol-gel hybrid materials," Appl. Phys. Lett. 85, 4289-4291 (2004).
[CrossRef]

2003

D. J. Kang, J. U. Park, B. S. Bae, J. Nishii, and K. Kintaka, "Single-Step Photo Patterning of Diffraction Gratings in Highly Photosensitive Hybrid Gel Films," Opt. Express 11, 1144-1148 (2003).
[CrossRef] [PubMed]

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal," Opt. Mater. 21, 643-646 (2003).
[CrossRef]

2002

S. K. Lee, K. C. Lee, and S. S. Lee, "A simple method for microlens fabrication by the modified LIGA process," J. Micromech. Microeng. 12, 334-340 (2002).
[CrossRef]

2001

Y. Q. Fu, and B. K. A. Ngoi, "Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology," Opt. Eng. 40, 511-516 (2001).
[CrossRef]

2000

R. R. A. Syms, "Refractive collimating microlens arrays by surface tension self-assembly," IEEE Photon. Technol. Lett. 12, 1507-1508 (2000).
[CrossRef]

X. Y. Zhang, Q. L. Tang, X. J. Yi, Z. Zhang, and X. D. Pei, "Cylindrical microlens array fabricated by argon ion-beam etching," Opt. Eng. 39, 3001-3007 (2000).
[CrossRef]

1999

R. Danzebrink, and M. A. Aegerter, "Deposition of micropatterned coating using an ink-jet technique," Thin Solid Films 351, 115-118 (1999).
[CrossRef]

1998

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, "Optical Photopolymers: Design and Applications," Adv. Mater. 10, 1219-1224 (1998).
[CrossRef]

1997

1996

S. N. Tang, T. Li, F. M. Li, C. Zhou, and R. T. Chen, "A holographic waveguide microlens array for surface-normal optical interconnects," IEEE Photon. Technol. Lett. 8, 1498-1500 (1996).
[CrossRef]

Aegerter, M. A.

R. Danzebrink, and M. A. Aegerter, "Deposition of micropatterned coating using an ink-jet technique," Thin Solid Films 351, 115-118 (1999).
[CrossRef]

Agarwall, M.

M. Agarwall, R.A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

Alice, Y. L.

Annapoorna, A.

Bae, B. S.

D. J. Kang, J. K. Kim, and B. S. Bae, "Simple fabrication of diffraction gratings by two-beam interference method in highly photosensitive hybrid sol-gel films," Opt. Express 11,3947-3953 (2004).
[CrossRef]

D. J. Kang, P. V. Phong, and B. S. Bae, "Fabrication of high-efficiency Fresnel-type lenses by pinhole diffraction imaging of sol-gel hybrid materials," Appl. Phys. Lett. 85, 4289-4291 (2004).
[CrossRef]

D. J. Kang, J. U. Park, B. S. Bae, J. Nishii, and K. Kintaka, "Single-Step Photo Patterning of Diffraction Gratings in Highly Photosensitive Hybrid Gel Films," Opt. Express 11, 1144-1148 (2003).
[CrossRef] [PubMed]

Bu, J.

M. He, X. Yuan, J. Bu, C. W. Tan, "A high-corrugation-rate self-processing SiO2-ZrO2 hybrid sol-gel material for fabrication of microlens array," IEEE Photon. Technol. Lett. 17, 1223-1225 (2005).
[CrossRef]

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass," Appl. Phys. Lett. 86, 114102 (2005).
[CrossRef]

Chen, R. T.

S. N. Tang, T. Li, F. M. Li, C. Zhou, and R. T. Chen, "A holographic waveguide microlens array for surface-normal optical interconnects," IEEE Photon. Technol. Lett. 8, 1498-1500 (1996).
[CrossRef]

Cheng, J. W. J.

T. K. Shin, J. R. Ho, and J. W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
[CrossRef]

Cheong, W. C.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass," Appl. Phys. Lett. 86, 114102 (2005).
[CrossRef]

Choi, Y.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal," Opt. Mater. 21, 643-646 (2003).
[CrossRef]

Coane, P.

M. Agarwall, R.A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

Danzebrink, R.

R. Danzebrink, and M. A. Aegerter, "Deposition of micropatterned coating using an ink-jet technique," Thin Solid Films 351, 115-118 (1999).
[CrossRef]

Fu, Y. Q.

Y. Q. Fu, and B. K. A. Ngoi, "Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology," Opt. Eng. 40, 511-516 (2001).
[CrossRef]

Gambogi, W. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, "Optical Photopolymers: Design and Applications," Adv. Mater. 10, 1219-1224 (1998).
[CrossRef]

Gunasekaran, R.A.

M. Agarwall, R.A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

He, M.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass," Appl. Phys. Lett. 86, 114102 (2005).
[CrossRef]

M. He, X. Yuan, J. Bu, C. W. Tan, "A high-corrugation-rate self-processing SiO2-ZrO2 hybrid sol-gel material for fabrication of microlens array," IEEE Photon. Technol. Lett. 17, 1223-1225 (2005).
[CrossRef]

Ho, J. R.

T. K. Shin, J. R. Ho, and J. W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
[CrossRef]

Huang, T.

T. Huang and K. H. Wagner, "Guided-wave microlens array applications to compact 1x8 planar waveguide splitters," Microwave and Opt. Technol. Lett. 43, 29-33 (2004).
[CrossRef]

Kang, D. J.

D. J. Kang, J. K. Kim, and B. S. Bae, "Simple fabrication of diffraction gratings by two-beam interference method in highly photosensitive hybrid sol-gel films," Opt. Express 11,3947-3953 (2004).
[CrossRef]

D. J. Kang, P. V. Phong, and B. S. Bae, "Fabrication of high-efficiency Fresnel-type lenses by pinhole diffraction imaging of sol-gel hybrid materials," Appl. Phys. Lett. 85, 4289-4291 (2004).
[CrossRef]

D. J. Kang, J. U. Park, B. S. Bae, J. Nishii, and K. Kintaka, "Single-Step Photo Patterning of Diffraction Gratings in Highly Photosensitive Hybrid Gel Films," Opt. Express 11, 1144-1148 (2003).
[CrossRef] [PubMed]

Kim, J. H.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal," Opt. Mater. 21, 643-646 (2003).
[CrossRef]

Kim, J. K.

D. J. Kang, J. K. Kim, and B. S. Bae, "Simple fabrication of diffraction gratings by two-beam interference method in highly photosensitive hybrid sol-gel films," Opt. Express 11,3947-3953 (2004).
[CrossRef]

Kintaka, K.

Lambertus, H.

Lee, K. C.

S. K. Lee, K. C. Lee, and S. S. Lee, "A simple method for microlens fabrication by the modified LIGA process," J. Micromech. Microeng. 12, 334-340 (2002).
[CrossRef]

Lee, S. D.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal," Opt. Mater. 21, 643-646 (2003).
[CrossRef]

Lee, S. K.

S. K. Lee, K. C. Lee, and S. S. Lee, "A simple method for microlens fabrication by the modified LIGA process," J. Micromech. Microeng. 12, 334-340 (2002).
[CrossRef]

Lee, S. S.

S. K. Lee, K. C. Lee, and S. S. Lee, "A simple method for microlens fabrication by the modified LIGA process," J. Micromech. Microeng. 12, 334-340 (2002).
[CrossRef]

Li, F. M.

S. N. Tang, T. Li, F. M. Li, C. Zhou, and R. T. Chen, "A holographic waveguide microlens array for surface-normal optical interconnects," IEEE Photon. Technol. Lett. 8, 1498-1500 (1996).
[CrossRef]

Li, T.

S. N. Tang, T. Li, F. M. Li, C. Zhou, and R. T. Chen, "A holographic waveguide microlens array for surface-normal optical interconnects," IEEE Photon. Technol. Lett. 8, 1498-1500 (1996).
[CrossRef]

Ngoi, B. K. A.

Y. Q. Fu, and B. K. A. Ngoi, "Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology," Opt. Eng. 40, 511-516 (2001).
[CrossRef]

Nishii, J.

Niu, H. B.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass," Appl. Phys. Lett. 86, 114102 (2005).
[CrossRef]

Park, J. H.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal," Opt. Mater. 21, 643-646 (2003).
[CrossRef]

Park, J. U.

Pei, X. D.

X. Y. Zhang, Q. L. Tang, X. J. Yi, Z. Zhang, and X. D. Pei, "Cylindrical microlens array fabricated by argon ion-beam etching," Opt. Eng. 39, 3001-3007 (2000).
[CrossRef]

Peng, X.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass," Appl. Phys. Lett. 86, 114102 (2005).
[CrossRef]

Phong, P. V.

D. J. Kang, P. V. Phong, and B. S. Bae, "Fabrication of high-efficiency Fresnel-type lenses by pinhole diffraction imaging of sol-gel hybrid materials," Appl. Phys. Lett. 85, 4289-4291 (2004).
[CrossRef]

Schmieg, J. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, "Optical Photopolymers: Design and Applications," Adv. Mater. 10, 1219-1224 (1998).
[CrossRef]

Shin, T. K.

T. K. Shin, J. R. Ho, and J. W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
[CrossRef]

Syms, R. R. A.

R. R. A. Syms, "Refractive collimating microlens arrays by surface tension self-assembly," IEEE Photon. Technol. Lett. 12, 1507-1508 (2000).
[CrossRef]

Tan, C. W.

M. He, X. Yuan, J. Bu, C. W. Tan, "A high-corrugation-rate self-processing SiO2-ZrO2 hybrid sol-gel material for fabrication of microlens array," IEEE Photon. Technol. Lett. 17, 1223-1225 (2005).
[CrossRef]

Tang, Q. L.

X. Y. Zhang, Q. L. Tang, X. J. Yi, Z. Zhang, and X. D. Pei, "Cylindrical microlens array fabricated by argon ion-beam etching," Opt. Eng. 39, 3001-3007 (2000).
[CrossRef]

Tang, S. N.

S. N. Tang, T. Li, F. M. Li, C. Zhou, and R. T. Chen, "A holographic waveguide microlens array for surface-normal optical interconnects," IEEE Photon. Technol. Lett. 8, 1498-1500 (1996).
[CrossRef]

Tokuyuki, H.

Trout, T. J.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, "Optical Photopolymers: Design and Applications," Adv. Mater. 10, 1219-1224 (1998).
[CrossRef]

Varahramyan, K.

M. Agarwall, R.A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

Wagner, K. H.

T. Huang and K. H. Wagner, "Guided-wave microlens array applications to compact 1x8 planar waveguide splitters," Microwave and Opt. Technol. Lett. 43, 29-33 (2004).
[CrossRef]

Weber, A. M.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, "Optical Photopolymers: Design and Applications," Adv. Mater. 10, 1219-1224 (1998).
[CrossRef]

Yi, X. J.

X. Y. Zhang, Q. L. Tang, X. J. Yi, Z. Zhang, and X. D. Pei, "Cylindrical microlens array fabricated by argon ion-beam etching," Opt. Eng. 39, 3001-3007 (2000).
[CrossRef]

Yu, W. X.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass," Appl. Phys. Lett. 86, 114102 (2005).
[CrossRef]

Yuan, X.

M. He, X. Yuan, J. Bu, C. W. Tan, "A high-corrugation-rate self-processing SiO2-ZrO2 hybrid sol-gel material for fabrication of microlens array," IEEE Photon. Technol. Lett. 17, 1223-1225 (2005).
[CrossRef]

Yuan, X. C.

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass," Appl. Phys. Lett. 86, 114102 (2005).
[CrossRef]

Zhang, X. Y.

X. Y. Zhang, Q. L. Tang, X. J. Yi, Z. Zhang, and X. D. Pei, "Cylindrical microlens array fabricated by argon ion-beam etching," Opt. Eng. 39, 3001-3007 (2000).
[CrossRef]

Zhang, Z.

X. Y. Zhang, Q. L. Tang, X. J. Yi, Z. Zhang, and X. D. Pei, "Cylindrical microlens array fabricated by argon ion-beam etching," Opt. Eng. 39, 3001-3007 (2000).
[CrossRef]

Zhou, C.

S. N. Tang, T. Li, F. M. Li, C. Zhou, and R. T. Chen, "A holographic waveguide microlens array for surface-normal optical interconnects," IEEE Photon. Technol. Lett. 8, 1498-1500 (1996).
[CrossRef]

Adv. Mater.

T. J. Trout, J. J. Schmieg, W. J. Gambogi, and A. M. Weber, "Optical Photopolymers: Design and Applications," Adv. Mater. 10, 1219-1224 (1998).
[CrossRef]

Appl. Phys. Lett.

D. J. Kang, P. V. Phong, and B. S. Bae, "Fabrication of high-efficiency Fresnel-type lenses by pinhole diffraction imaging of sol-gel hybrid materials," Appl. Phys. Lett. 85, 4289-4291 (2004).
[CrossRef]

X. C. Yuan, W. X. Yu, M. He, J. Bu, W. C. Cheong, H. B. Niu, and X. Peng, "Soft-lithography-enabled fabrication of large numerical aperture refractive microlens array in hybrid SiO2-TiO2 sol-gel glass," Appl. Phys. Lett. 86, 114102 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

S. N. Tang, T. Li, F. M. Li, C. Zhou, and R. T. Chen, "A holographic waveguide microlens array for surface-normal optical interconnects," IEEE Photon. Technol. Lett. 8, 1498-1500 (1996).
[CrossRef]

R. R. A. Syms, "Refractive collimating microlens arrays by surface tension self-assembly," IEEE Photon. Technol. Lett. 12, 1507-1508 (2000).
[CrossRef]

M. He, X. Yuan, J. Bu, C. W. Tan, "A high-corrugation-rate self-processing SiO2-ZrO2 hybrid sol-gel material for fabrication of microlens array," IEEE Photon. Technol. Lett. 17, 1223-1225 (2005).
[CrossRef]

T. K. Shin, J. R. Ho, and J. W. J. Cheng, "A new approach to polymeric microlens array fabrication using soft replica molding," IEEE Photon. Technol. Lett. 16, 2078-2080 (2004).
[CrossRef]

J. Micromech. Microeng.

S. K. Lee, K. C. Lee, and S. S. Lee, "A simple method for microlens fabrication by the modified LIGA process," J. Micromech. Microeng. 12, 334-340 (2002).
[CrossRef]

M. Agarwall, R.A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

Microwave and Opt. Technol. Lett.

T. Huang and K. H. Wagner, "Guided-wave microlens array applications to compact 1x8 planar waveguide splitters," Microwave and Opt. Technol. Lett. 43, 29-33 (2004).
[CrossRef]

Opt. Eng.

X. Y. Zhang, Q. L. Tang, X. J. Yi, Z. Zhang, and X. D. Pei, "Cylindrical microlens array fabricated by argon ion-beam etching," Opt. Eng. 39, 3001-3007 (2000).
[CrossRef]

Y. Q. Fu, and B. K. A. Ngoi, "Investigation of diffractive-refractive microlens array fabricated by focused ion beam technology," Opt. Eng. 40, 511-516 (2001).
[CrossRef]

Opt. Express

D. J. Kang, J. U. Park, B. S. Bae, J. Nishii, and K. Kintaka, "Single-Step Photo Patterning of Diffraction Gratings in Highly Photosensitive Hybrid Gel Films," Opt. Express 11, 1144-1148 (2003).
[CrossRef] [PubMed]

D. J. Kang, J. K. Kim, and B. S. Bae, "Simple fabrication of diffraction gratings by two-beam interference method in highly photosensitive hybrid sol-gel films," Opt. Express 11,3947-3953 (2004).
[CrossRef]

Opt. Lett.

Opt. Mater.

Y. Choi, J. H. Park, J. H. Kim, and S. D. Lee, "Fabrication of a focal length variable microlens array based on a nematic liquid crystal," Opt. Mater. 21, 643-646 (2003).
[CrossRef]

Thin Solid Films

R. Danzebrink, and M. A. Aegerter, "Deposition of micropatterned coating using an ink-jet technique," Thin Solid Films 351, 115-118 (1999).
[CrossRef]

Other

D. J. Kang, W. S. Kim and B. S. Bae, "Direct Photofabrication of Refractive-index-modulated Multimode Optical Waveguide Using Photosensitive Sol-gel Hybrid Materials," Appl. Phys. Lett. 87, 221106 1-3 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of the direct photofabrication of a MLA using photoinduced migration mechanisms photosensitive SGH materials. (a) Spin coating and formation of photosensitive SGH film; (b) Selective UV exposure for the direct photofabrication of the MLA on photosensitive SGH film with a photo mask; and (c) Final formation of the stabilized MLA through thermal curing.

Fig. 2.
Fig. 2.

(a) a 3D SI image, (b) an AFM RMS roughness image and (c) focal spot images on focusing plane of a MLA directly photofabricated using photoinduced migration mechanisms of photosensitive SGH materials.

Fig. 3.
Fig. 3.

Height changes of MLAs directly photofabricated through the control of photoinduced migration parameters. 2D SI line profiles of (a) MLA heights depending on photoactive monomer (photoinitiator: BDK) content and (b) MLA heights depending on the photosensitive SGH film thickness. (h: Height of MLA, F. T.: Film Thickness).

Fig. 4.
Fig. 4.

Control of focal lengths of the MLAs directly photofabricated using photoinduced migration mechanisms of photosensitive SGH materials. (a) The relationship between the photoactive monomer concentration and focal lengths of MLAs. (b) The relationship between the film thickness and focal lengths of MLAs.

Metrics