Abstract

The propagation of 300 femtosecond optical pulses in Silicon-on Insulator waveguides has been studied by means of a pump-probe set-up. The ultrafast pulses allowed the observation of large Kerr-induced red and blue shifts (9nm and 15nm, respectively) of the probe signal depending on the delay between pump (1554nm) and probe (1683nm) pulses. A numerical model taking into account the Kerr effect, Two Photon Absorption and Free Carrier Absorption is presented and provides good agreement with our experimental data and data in literature. A microring resonator based device is proposed that exploits the observed wavelength shift for sub-picosecond all-optical switching.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, "Optical age of silicon," Nature 427, 595-596 (2004).
    [CrossRef] [PubMed]
  2. V. Raghunathan, R. Claps, D. Dimitropoulos, and B. Jalali, "Parametric Raman wavelength conversion in scaled silicon waveguides," J. Lightwave Technol. 23, 2094-2102 (2005).
    [CrossRef]
  3. A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
    [CrossRef] [PubMed]
  4. Q. Xu, V. R. Almeida, and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt. Express 12, 4437-4442 (2004).
    [CrossRef] [PubMed]
  5. T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5µm wavelength for autocorrelation measurements," Appl. Phys. Lett. 84, 2745-2747 (2002).
    [CrossRef]
  6. O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004).
    [CrossRef] [PubMed]
  7. R. Dekker, E. J. Klein, J. Niehusmann, M. Först, F. Ondracek, J. Ctyroky, N. Usechak, and A. Driessen, "Self phase modulation and stimulated Raman scattering due to high power femtosecond pulse propagation in silicon-on-insulator waveguides," presented at the Symposium IEEE/LEOS Benelux Chapter, Mons, Belgium, (2005).
  8. E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, R. M. Osgood Jr., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534, (2006).
    [CrossRef] [PubMed]
  9. O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004).
    [CrossRef] [PubMed]
  10. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13, 4629-4637 (2005).
    [CrossRef] [PubMed]
  11. M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
    [CrossRef]
  12. T. K. Liang and H. K. Tsang, "Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides," IEEE J. Sel. Top. Quantum Electron. 10, 1149-1153 (2004).
    [CrossRef]
  13. H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
    [CrossRef]
  14. R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in Silicon waveguides," Opt. Express 12, 2774-2780 (2004).
    [CrossRef] [PubMed]
  15. R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
    [CrossRef]
  16. J. I. Dadap, R. L. Espinola, R. M. Osgood Jr., S. J. McNab, and Y. A. Vlasov, "Spontaneous Raman scattering in ultrasmall silicon waveguides," Opt. Lett. 29, 2755-2757 (2004).
    [CrossRef] [PubMed]
  17. Y. Liu and H. K. Tsang, "Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides," Opt. Lett. 31, 1714-1716, (2006).
    [CrossRef] [PubMed]
  18. X. Chen, N. C. Panoiu, and R. M. OsgoodJr., "Theory of Raman-mediated pulsed amplification in silicon-wire waveguides," IEEE J. Quantum Electron. 42, 160-170 (2006).
    [CrossRef]
  19. FieldDesigner, www.phoenixbv.com.
  20. E. D. Palik, "Handbook of Optical Constants of Solids," (Academic Press, 1998).
  21. Q. Xu, V. R. Almeida, and M. Lipson, "Demonstration of high Raman gain in a submicrometer-size silicon-on-insulator waveguide," Opt. Lett. 30, 35-37 (2005).
    [CrossRef] [PubMed]
  22. D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, "Experimental and numerical study of SiON Microresonators with air and polymer cladding," J. Lightwave Technol. 21, 1099-1110 (2003).
    [CrossRef]
  23. D. H. Geuzebroek, E. J. Klein, H. Kelderman, N. Baker, and A. Driessen, "Compact wavelength-selective switch for Gigabit Filtering in Access Networks," IEEE Photon. Technol. Lett. 17, 336-338, (2005).
    [CrossRef]
  24. V.R. Almeida, and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. 29, 2387-2389, (2004).
    [CrossRef] [PubMed]

2006 (3)

2005 (4)

2004 (10)

G. T. Reed, "Optical age of silicon," Nature 427, 595-596 (2004).
[CrossRef] [PubMed]

T. K. Liang and H. K. Tsang, "Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides," IEEE J. Sel. Top. Quantum Electron. 10, 1149-1153 (2004).
[CrossRef]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

O. Boyraz, T. Indukuri, and B. Jalali, "Self-phase-modulation induced spectral broadening in silicon waveguides," Opt. Express 12, 829-834 (2004).
[CrossRef] [PubMed]

R. Claps, V. Raghunathan, D. Dimitropoulos, and B. Jalali, "Influence of nonlinear absorption on Raman amplification in Silicon waveguides," Opt. Express 12, 2774-2780 (2004).
[CrossRef] [PubMed]

O. Boyraz, P. Koonath, V. Raghunathan, and B. Jalali, "All optical switching and continuum generation in silicon waveguides," Opt. Express 12, 4094-4102 (2004).
[CrossRef] [PubMed]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

Q. Xu, V. R. Almeida, and M. Lipson, "Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides," Opt. Express 12, 4437-4442 (2004).
[CrossRef] [PubMed]

V.R. Almeida, and M. Lipson, "Optical bistability on a silicon chip," Opt. Lett. 29, 2387-2389, (2004).
[CrossRef] [PubMed]

J. I. Dadap, R. L. Espinola, R. M. Osgood Jr., S. J. McNab, and Y. A. Vlasov, "Spontaneous Raman scattering in ultrasmall silicon waveguides," Opt. Lett. 29, 2755-2757 (2004).
[CrossRef] [PubMed]

2003 (2)

2002 (1)

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5µm wavelength for autocorrelation measurements," Appl. Phys. Lett. 84, 2745-2747 (2002).
[CrossRef]

1987 (1)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

Almeida, V. R.

Almeida, V.R.

Asghari, M.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5µm wavelength for autocorrelation measurements," Appl. Phys. Lett. 84, 2745-2747 (2002).
[CrossRef]

Baker, N.

D. H. Geuzebroek, E. J. Klein, H. Kelderman, N. Baker, and A. Driessen, "Compact wavelength-selective switch for Gigabit Filtering in Access Networks," IEEE Photon. Technol. Lett. 17, 336-338, (2005).
[CrossRef]

Bennett, B. R.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

Boyraz, O.

Bulthuis, H. F.

Chen, X.

X. Chen, N. C. Panoiu, and R. M. OsgoodJr., "Theory of Raman-mediated pulsed amplification in silicon-wire waveguides," IEEE J. Quantum Electron. 42, 160-170 (2006).
[CrossRef]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, R. M. Osgood Jr., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534, (2006).
[CrossRef] [PubMed]

Claps, R.

Cohen, O.

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

Dadap, J. I.

Day, I. E.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5µm wavelength for autocorrelation measurements," Appl. Phys. Lett. 84, 2745-2747 (2002).
[CrossRef]

Dimitropoulos, D.

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Docter, B.

Drake, J.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5µm wavelength for autocorrelation measurements," Appl. Phys. Lett. 84, 2745-2747 (2002).
[CrossRef]

Driessen, A.

D. H. Geuzebroek, E. J. Klein, H. Kelderman, N. Baker, and A. Driessen, "Compact wavelength-selective switch for Gigabit Filtering in Access Networks," IEEE Photon. Technol. Lett. 17, 336-338, (2005).
[CrossRef]

D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo, B. Docter, H. J. W. M. Hoekstra, and A. Driessen, "Experimental and numerical study of SiON Microresonators with air and polymer cladding," J. Lightwave Technol. 21, 1099-1110 (2003).
[CrossRef]

Dulkeith, E.

Espinola, R. L.

Fukuda, H.

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Geuzebroek, D. H.

D. H. Geuzebroek, E. J. Klein, H. Kelderman, N. Baker, and A. Driessen, "Compact wavelength-selective switch for Gigabit Filtering in Access Networks," IEEE Photon. Technol. Lett. 17, 336-338, (2005).
[CrossRef]

Hak, D.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

Hoekstra, H. J. W. M.

Indukuri, T.

Itabashi, S.

Jalali, B.

Kelderman, H.

D. H. Geuzebroek, E. J. Klein, H. Kelderman, N. Baker, and A. Driessen, "Compact wavelength-selective switch for Gigabit Filtering in Access Networks," IEEE Photon. Technol. Lett. 17, 336-338, (2005).
[CrossRef]

Klein, E. J.

D. H. Geuzebroek, E. J. Klein, H. Kelderman, N. Baker, and A. Driessen, "Compact wavelength-selective switch for Gigabit Filtering in Access Networks," IEEE Photon. Technol. Lett. 17, 336-338, (2005).
[CrossRef]

Klunder, D. J. W.

Knights, A. P.

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5µm wavelength for autocorrelation measurements," Appl. Phys. Lett. 84, 2745-2747 (2002).
[CrossRef]

Koonath, P.

Liang, T. K.

T. K. Liang and H. K. Tsang, "Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides," IEEE J. Sel. Top. Quantum Electron. 10, 1149-1153 (2004).
[CrossRef]

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5µm wavelength for autocorrelation measurements," Appl. Phys. Lett. 84, 2745-2747 (2002).
[CrossRef]

Lipson, M.

Liu, A.

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

Liu, Y.

McNab, S. J.

Nicolaescu, R.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

Osgood, R. M.

Paniccia, M.

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

Panoiu, N. C.

X. Chen, N. C. Panoiu, and R. M. OsgoodJr., "Theory of Raman-mediated pulsed amplification in silicon-wire waveguides," IEEE J. Quantum Electron. 42, 160-170 (2006).
[CrossRef]

E. Dulkeith, Y. A. Vlasov, X. Chen, N. C. Panoiu, R. M. Osgood Jr., "Self-phase-modulation in submicron silicon-on-insulator photonic wires," Opt. Express 14, 5524-5534, (2006).
[CrossRef] [PubMed]

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

Raghunathan, V.

Reed, G. T.

G. T. Reed, "Optical age of silicon," Nature 427, 595-596 (2004).
[CrossRef] [PubMed]

Rong, H.

A. Liu, H. Rong, M. Paniccia, O. Cohen, and D. Hak, "Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering," Opt. Express 12, 4261-4268 (2004).
[CrossRef] [PubMed]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

Sengo, G.

Shoji, T.

Soref, R. A.

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

Takahashi, J.

Takahashi, M.

Tan, F. S.

Tsang, H. K.

Y. Liu and H. K. Tsang, "Nonlinear absorption and Raman gain in helium-ion-implanted silicon waveguides," Opt. Lett. 31, 1714-1716, (2006).
[CrossRef] [PubMed]

T. K. Liang and H. K. Tsang, "Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides," IEEE J. Sel. Top. Quantum Electron. 10, 1149-1153 (2004).
[CrossRef]

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5µm wavelength for autocorrelation measurements," Appl. Phys. Lett. 84, 2745-2747 (2002).
[CrossRef]

Tsuchizawa, T.

van der Veen, T.

Vlasov, Y. A.

Watanabe, T.

Xu, Q.

Yamada, K.

Appl. Phys. Lett. (3)

T. K. Liang, H. K. Tsang, I. E. Day, J. Drake, A. P. Knights, and M. Asghari, "Silicon waveguide two-photon absorption detector at 1.5µm wavelength for autocorrelation measurements," Appl. Phys. Lett. 84, 2745-2747 (2002).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom wavelengths," Appl. Phys. Lett. 82, 2954-2956 (2003).
[CrossRef]

H. Rong, A. Liu, R. Nicolaescu, M. Paniccia, O. Cohen, and D. Hak, "Raman gain and nonlinear optical absorption measurements in a low-loss silicon waveguide," Appl. Phys. Lett. 85, 2196-2198 (2004).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. A. Soref and B. R. Bennett, "Electrooptical effects in silicon," IEEE J. Quantum Electron. QE-23, 123-129 (1987).
[CrossRef]

X. Chen, N. C. Panoiu, and R. M. OsgoodJr., "Theory of Raman-mediated pulsed amplification in silicon-wire waveguides," IEEE J. Quantum Electron. 42, 160-170 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. K. Liang and H. K. Tsang, "Nonlinear absorption and Raman scattering in silicon-on-insulator optical waveguides," IEEE J. Sel. Top. Quantum Electron. 10, 1149-1153 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. H. Geuzebroek, E. J. Klein, H. Kelderman, N. Baker, and A. Driessen, "Compact wavelength-selective switch for Gigabit Filtering in Access Networks," IEEE Photon. Technol. Lett. 17, 336-338, (2005).
[CrossRef]

J. Lightwave Technol. (2)

Nature (1)

G. T. Reed, "Optical age of silicon," Nature 427, 595-596 (2004).
[CrossRef] [PubMed]

Opt. Express (7)

Opt. Lett. (4)

Other (3)

R. Dekker, E. J. Klein, J. Niehusmann, M. Först, F. Ondracek, J. Ctyroky, N. Usechak, and A. Driessen, "Self phase modulation and stimulated Raman scattering due to high power femtosecond pulse propagation in silicon-on-insulator waveguides," presented at the Symposium IEEE/LEOS Benelux Chapter, Mons, Belgium, (2005).

FieldDesigner, www.phoenixbv.com.

E. D. Palik, "Handbook of Optical Constants of Solids," (Academic Press, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic representation of the pump-probe setup.

Fig. 2.
Fig. 2.

Probe signal transmission as function of delay time.

Fig. 3.
Fig. 3.

Center wavelength of the probe signal as function of delay time.

Fig. 4.
Fig. 4.

Left: first order dispersion as a function of wavelength. Pump and probe wavelengths are marked with black dots. Right: walkoff length as function of waveguide width. The waveguide width of the waveguide used in the experiments is marked with a black dot.

Fig. 5.
Fig. 5.

Schematic representation of an all-optical switching scheme consisting of an active SOI waveguide channel for the wavelength conversion and a passive SOI ring resonator for the wavelength dependent space switching. The experimentally observed wavelength shift as function of delay time is projected on top of the theoretical spectral response of a microring resonator to illustrate the working principle of this all-optical switching scheme.

Tables (1)

Tables Icon

Table 1. Temporal characteristics of pulse propagation in SOI waveguides for different pulse durations. Simulations of the pulse intensities, free carrier densities and refractive index change as function of time are shown for 300fs, 3.5ps and 17ns experiments, respectively. The last row shows the XPM induced wavelength shift of the probe signal.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I t 0 = I max e 0.5 ( t t 0 δ ) 2
dI t z dz = αI t z β I 2 t z σN t z I t z
dN t z dt = β 2 hv I 2 t z N t z τ
Δ n Kerr t z = n 2 I t z
Δ n FC t z = ( 8.8.10 22 N e t z + 8.5· 10 18 N h t z 0.8 )
Δϕ t z = 2 π L int λ [ Δ n Kerr t z + Δ n FC t z ]
Δω t z = d dt Δ ϕ t z
λ s = λ 0 1 L int c Δ n t z dt
L w ( λ ) = T 0 β 1 p ( λ ) β 1 s ( λ )

Metrics