Abstract

We present experimental and theoretical investigation of intensity noise features in SBS for experimental configuration utilized injection locking of two semiconductor lasers for Stokes signal generation. Significant decreasing of the intensity noise of the Stokes signal with the frequency equal to the Brillouin resonance is observed and analytically explained.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Horowitz , A. R. Chraplyvy , R. W. Tkach , and J. L. Zyskind , “ Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers ,” IEEE Photon. Technol. Lett.   9 , 124 – 126 ( 1997 ).
    [CrossRef]
  2. T. Horiguchi , K. Shimizu , T. Kurashima , M. Tateda , and Y. Koyamada , “ Development of a distributed sensing technique using Brillouin scattering ,” J. Lightwave Technol.   13 , 1296 – 130 ( 1995 ).
    [CrossRef]
  3. K. Hotate and M. Tanaka , “ Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation based continuous-wave technique ,” IEEE Photon. Technol. Lett.   14 , 179 – 181 , ( 2002 ).
    [CrossRef]
  4. D. Garus , T. Gogolla , K. Krebber , and F. Schliep , “ Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements ,” J. Lightwave Technol.   15 , 654 – 662 , ( 1997 ).
    [CrossRef]
  5. M. Horowitz , A. R. Chraplyvy , R. W. Tkach , and J. L. Zyskind , “ Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers ,” IEEE Photon. Technol. Lett.   9 , 124 –6 ( 1997 ).
    [CrossRef]
  6. L. Stepien , S. Randoux , and J. Zemmouri , “ Origin of spectral hole burning in Brillouin fiber amplifiers and generators ,” Phys. Rev. A   65 , 053812 ( 2002 ).
    [CrossRef]
  7. A. A. Fotiadi , R. Kiyan , O. Deparis , P. Mégret , and M. Blondel , “ Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold ,” Opt. Lett.   27 , 2 , ( 2002 ).
    [CrossRef]
  8. E. Peral and A. Yariv , “ Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering ,” IEEE J. Quantum Electron.   35 , 1185 –95 ( 1999 ).
    [CrossRef]
  9. J. Zhang and M. R. Phillips , “ Cancellation of Intensity Noise caused by Stimulated Brillouin Scattering in an Optical Fiber Transmission System ,” OFC 2005, presented in Postdeadline Sessions.
  10. L. Thévenaz , S. Le Floch , and J. Troger , “ Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing ,” Meas. Sci. Technol.   15 , 1519 – 1524 , ( 2004 ).
    [CrossRef]

2004 (1)

L. Thévenaz , S. Le Floch , and J. Troger , “ Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing ,” Meas. Sci. Technol.   15 , 1519 – 1524 , ( 2004 ).
[CrossRef]

2002 (3)

L. Stepien , S. Randoux , and J. Zemmouri , “ Origin of spectral hole burning in Brillouin fiber amplifiers and generators ,” Phys. Rev. A   65 , 053812 ( 2002 ).
[CrossRef]

A. A. Fotiadi , R. Kiyan , O. Deparis , P. Mégret , and M. Blondel , “ Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold ,” Opt. Lett.   27 , 2 , ( 2002 ).
[CrossRef]

K. Hotate and M. Tanaka , “ Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation based continuous-wave technique ,” IEEE Photon. Technol. Lett.   14 , 179 – 181 , ( 2002 ).
[CrossRef]

1999 (1)

E. Peral and A. Yariv , “ Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering ,” IEEE J. Quantum Electron.   35 , 1185 –95 ( 1999 ).
[CrossRef]

1997 (3)

D. Garus , T. Gogolla , K. Krebber , and F. Schliep , “ Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements ,” J. Lightwave Technol.   15 , 654 – 662 , ( 1997 ).
[CrossRef]

M. Horowitz , A. R. Chraplyvy , R. W. Tkach , and J. L. Zyskind , “ Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers ,” IEEE Photon. Technol. Lett.   9 , 124 –6 ( 1997 ).
[CrossRef]

M. Horowitz , A. R. Chraplyvy , R. W. Tkach , and J. L. Zyskind , “ Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers ,” IEEE Photon. Technol. Lett.   9 , 124 – 126 ( 1997 ).
[CrossRef]

1995 (1)

T. Horiguchi , K. Shimizu , T. Kurashima , M. Tateda , and Y. Koyamada , “ Development of a distributed sensing technique using Brillouin scattering ,” J. Lightwave Technol.   13 , 1296 – 130 ( 1995 ).
[CrossRef]

Blondel, M.

A. A. Fotiadi , R. Kiyan , O. Deparis , P. Mégret , and M. Blondel , “ Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold ,” Opt. Lett.   27 , 2 , ( 2002 ).
[CrossRef]

Chraplyvy, A. R.

M. Horowitz , A. R. Chraplyvy , R. W. Tkach , and J. L. Zyskind , “ Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers ,” IEEE Photon. Technol. Lett.   9 , 124 – 126 ( 1997 ).
[CrossRef]

M. Horowitz , A. R. Chraplyvy , R. W. Tkach , and J. L. Zyskind , “ Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers ,” IEEE Photon. Technol. Lett.   9 , 124 –6 ( 1997 ).
[CrossRef]

Deparis, O.

A. A. Fotiadi , R. Kiyan , O. Deparis , P. Mégret , and M. Blondel , “ Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold ,” Opt. Lett.   27 , 2 , ( 2002 ).
[CrossRef]

Fotiadi, A. A.

A. A. Fotiadi , R. Kiyan , O. Deparis , P. Mégret , and M. Blondel , “ Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold ,” Opt. Lett.   27 , 2 , ( 2002 ).
[CrossRef]

Garus, D.

D. Garus , T. Gogolla , K. Krebber , and F. Schliep , “ Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements ,” J. Lightwave Technol.   15 , 654 – 662 , ( 1997 ).
[CrossRef]

Gogolla, T.

D. Garus , T. Gogolla , K. Krebber , and F. Schliep , “ Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements ,” J. Lightwave Technol.   15 , 654 – 662 , ( 1997 ).
[CrossRef]

Horiguchi, T.

T. Horiguchi , K. Shimizu , T. Kurashima , M. Tateda , and Y. Koyamada , “ Development of a distributed sensing technique using Brillouin scattering ,” J. Lightwave Technol.   13 , 1296 – 130 ( 1995 ).
[CrossRef]

Horowitz, M.

M. Horowitz , A. R. Chraplyvy , R. W. Tkach , and J. L. Zyskind , “ Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers ,” IEEE Photon. Technol. Lett.   9 , 124 – 126 ( 1997 ).
[CrossRef]

M. Horowitz , A. R. Chraplyvy , R. W. Tkach , and J. L. Zyskind , “ Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers ,” IEEE Photon. Technol. Lett.   9 , 124 –6 ( 1997 ).
[CrossRef]

Hotate, K.

K. Hotate and M. Tanaka , “ Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation based continuous-wave technique ,” IEEE Photon. Technol. Lett.   14 , 179 – 181 , ( 2002 ).
[CrossRef]

Kiyan, R.

A. A. Fotiadi , R. Kiyan , O. Deparis , P. Mégret , and M. Blondel , “ Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold ,” Opt. Lett.   27 , 2 , ( 2002 ).
[CrossRef]

Koyamada, Y.

T. Horiguchi , K. Shimizu , T. Kurashima , M. Tateda , and Y. Koyamada , “ Development of a distributed sensing technique using Brillouin scattering ,” J. Lightwave Technol.   13 , 1296 – 130 ( 1995 ).
[CrossRef]

Krebber, K.

D. Garus , T. Gogolla , K. Krebber , and F. Schliep , “ Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements ,” J. Lightwave Technol.   15 , 654 – 662 , ( 1997 ).
[CrossRef]

Kurashima, T.

T. Horiguchi , K. Shimizu , T. Kurashima , M. Tateda , and Y. Koyamada , “ Development of a distributed sensing technique using Brillouin scattering ,” J. Lightwave Technol.   13 , 1296 – 130 ( 1995 ).
[CrossRef]

Le Floch, S.

L. Thévenaz , S. Le Floch , and J. Troger , “ Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing ,” Meas. Sci. Technol.   15 , 1519 – 1524 , ( 2004 ).
[CrossRef]

Mégret, P.

A. A. Fotiadi , R. Kiyan , O. Deparis , P. Mégret , and M. Blondel , “ Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold ,” Opt. Lett.   27 , 2 , ( 2002 ).
[CrossRef]

Peral, E.

E. Peral and A. Yariv , “ Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering ,” IEEE J. Quantum Electron.   35 , 1185 –95 ( 1999 ).
[CrossRef]

Phillips, M. R.

J. Zhang and M. R. Phillips , “ Cancellation of Intensity Noise caused by Stimulated Brillouin Scattering in an Optical Fiber Transmission System ,” OFC 2005, presented in Postdeadline Sessions.

Randoux, S.

L. Stepien , S. Randoux , and J. Zemmouri , “ Origin of spectral hole burning in Brillouin fiber amplifiers and generators ,” Phys. Rev. A   65 , 053812 ( 2002 ).
[CrossRef]

Schliep, F.

D. Garus , T. Gogolla , K. Krebber , and F. Schliep , “ Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements ,” J. Lightwave Technol.   15 , 654 – 662 , ( 1997 ).
[CrossRef]

Shimizu, K.

T. Horiguchi , K. Shimizu , T. Kurashima , M. Tateda , and Y. Koyamada , “ Development of a distributed sensing technique using Brillouin scattering ,” J. Lightwave Technol.   13 , 1296 – 130 ( 1995 ).
[CrossRef]

Stepien, L.

L. Stepien , S. Randoux , and J. Zemmouri , “ Origin of spectral hole burning in Brillouin fiber amplifiers and generators ,” Phys. Rev. A   65 , 053812 ( 2002 ).
[CrossRef]

Tanaka, M.

K. Hotate and M. Tanaka , “ Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation based continuous-wave technique ,” IEEE Photon. Technol. Lett.   14 , 179 – 181 , ( 2002 ).
[CrossRef]

Tateda, M.

T. Horiguchi , K. Shimizu , T. Kurashima , M. Tateda , and Y. Koyamada , “ Development of a distributed sensing technique using Brillouin scattering ,” J. Lightwave Technol.   13 , 1296 – 130 ( 1995 ).
[CrossRef]

Thévenaz, L.

L. Thévenaz , S. Le Floch , and J. Troger , “ Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing ,” Meas. Sci. Technol.   15 , 1519 – 1524 , ( 2004 ).
[CrossRef]

Tkach, R. W.

M. Horowitz , A. R. Chraplyvy , R. W. Tkach , and J. L. Zyskind , “ Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers ,” IEEE Photon. Technol. Lett.   9 , 124 – 126 ( 1997 ).
[CrossRef]

M. Horowitz , A. R. Chraplyvy , R. W. Tkach , and J. L. Zyskind , “ Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers ,” IEEE Photon. Technol. Lett.   9 , 124 –6 ( 1997 ).
[CrossRef]

Troger, J.

L. Thévenaz , S. Le Floch , and J. Troger , “ Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing ,” Meas. Sci. Technol.   15 , 1519 – 1524 , ( 2004 ).
[CrossRef]

Yariv, A.

E. Peral and A. Yariv , “ Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering ,” IEEE J. Quantum Electron.   35 , 1185 –95 ( 1999 ).
[CrossRef]

Zemmouri, J.

L. Stepien , S. Randoux , and J. Zemmouri , “ Origin of spectral hole burning in Brillouin fiber amplifiers and generators ,” Phys. Rev. A   65 , 053812 ( 2002 ).
[CrossRef]

Zhang, J.

J. Zhang and M. R. Phillips , “ Cancellation of Intensity Noise caused by Stimulated Brillouin Scattering in an Optical Fiber Transmission System ,” OFC 2005, presented in Postdeadline Sessions.

Zyskind, J. L.

M. Horowitz , A. R. Chraplyvy , R. W. Tkach , and J. L. Zyskind , “ Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers ,” IEEE Photon. Technol. Lett.   9 , 124 –6 ( 1997 ).
[CrossRef]

M. Horowitz , A. R. Chraplyvy , R. W. Tkach , and J. L. Zyskind , “ Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers ,” IEEE Photon. Technol. Lett.   9 , 124 – 126 ( 1997 ).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. Peral and A. Yariv , “ Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering ,” IEEE J. Quantum Electron.   35 , 1185 –95 ( 1999 ).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

M. Horowitz , A. R. Chraplyvy , R. W. Tkach , and J. L. Zyskind , “ Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers ,” IEEE Photon. Technol. Lett.   9 , 124 –6 ( 1997 ).
[CrossRef]

M. Horowitz , A. R. Chraplyvy , R. W. Tkach , and J. L. Zyskind , “ Broad-band transmitted intensity noise induced by Stokes and anti-Stokes Brillouin scattering in single-mode fibers ,” IEEE Photon. Technol. Lett.   9 , 124 – 126 ( 1997 ).
[CrossRef]

K. Hotate and M. Tanaka , “ Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation based continuous-wave technique ,” IEEE Photon. Technol. Lett.   14 , 179 – 181 , ( 2002 ).
[CrossRef]

J. Lightwave Technol. (2)

D. Garus , T. Gogolla , K. Krebber , and F. Schliep , “ Brillouin optical-fiber frequency-domain analysis for distributed temperature and strain measurements ,” J. Lightwave Technol.   15 , 654 – 662 , ( 1997 ).
[CrossRef]

T. Horiguchi , K. Shimizu , T. Kurashima , M. Tateda , and Y. Koyamada , “ Development of a distributed sensing technique using Brillouin scattering ,” J. Lightwave Technol.   13 , 1296 – 130 ( 1995 ).
[CrossRef]

Meas. Sci. Technol. (1)

L. Thévenaz , S. Le Floch , and J. Troger , “ Novel schemes for optical signal generation using laser injection locking with application to Brillouin sensing ,” Meas. Sci. Technol.   15 , 1519 – 1524 , ( 2004 ).
[CrossRef]

Opt. Lett. (1)

A. A. Fotiadi , R. Kiyan , O. Deparis , P. Mégret , and M. Blondel , “ Statistical properties of stimulated Brillouin scattering in single-mode optical fibers above threshold ,” Opt. Lett.   27 , 2 , ( 2002 ).
[CrossRef]

Phys. Rev. A (1)

L. Stepien , S. Randoux , and J. Zemmouri , “ Origin of spectral hole burning in Brillouin fiber amplifiers and generators ,” Phys. Rev. A   65 , 053812 ( 2002 ).
[CrossRef]

Other (1)

J. Zhang and M. R. Phillips , “ Cancellation of Intensity Noise caused by Stimulated Brillouin Scattering in an Optical Fiber Transmission System ,” OFC 2005, presented in Postdeadline Sessions.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup. EDFA- Er-doped fiber amplifier, VA-variable attenuator, OI-optical isolator, PC-polarisation controller, OSA- optical spectrum analyzer, MG – microwave generator, PD-photodiode.

Fig. 2.
Fig. 2.

RMS of ac-coupled Stokes component, experimental (solid with symbols) and calculated (solid) values for different pump power: blue - 8.4dBm (0.8Pth ), red -10.4 dBm (1.27 Pth ), ◌ - 11.4dBm (1.6Pth ), black - 12.4dBm (2.0 Pth ).

Fig. 3.
Fig. 3.

Amplified dc-coupled Stokes component for different pump power: ▽-8.4dBm (0.8Pth ), Δ -10.4 dBm (1.27Pth ), ◌ - 11.4dBm (1.6Pth ), □ - 12.4dBm (2.0 Pth ).

Fig. 4.
Fig. 4.

RMS of ac-coupled Stokes component versus pump power for two different detuning frequency.

Fig. 5.
Fig. 5.

Stokes intensity noise spectrum, pump equal to 1.6 Pth , detuning frequencies equal to 160 and 200 MHz.

Fig. 6.
Fig. 6.

Stokes intensity noise spectrum. Pump equal to 1.6 Pth . Detuning frequencies equal to 0, 10, 20, 30 and 40 MHz.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

dP 1 dz = G ( ν ) P 1 P 2 α P 1
dP 2 dz = G ( ν ) P 1 P 2 α P 2
G ( v ) = g A eff 1 1 + ( 2 πvT 2 ) 2
dP N z ν ν ˜ dz = G ( ν ˜ ) P 1 z ν P N z ν ν ˜ αP N z ν ν ˜
P N 0 ν ν ˜ = 0 L D z ν ν ˜ δP N ν ν ˜ z dz ,
δP N ν ν ˜ z ~ P 1 z ν ˜ G ( ν ˜ ) ,
D z ν ν ˜ exp { G ( ν ˜ ) 0 z P 1 z ν dz } = ( P 2 0 ν P 2 z ν ) G ( ν ˜ ) G ( ν ) exp [ ( G ( ν ˜ ) G ( ν ) 1 ) αz ]
RMS ( I ( t ) ) = I 2 ( t ) I ( t ) 2 ~
~ P 2 0 ν P N 0 ν ν ˜ d ν ˜ ,

Metrics