Abstract

We observed a THz parametric conversion in which a near-infrared laser beam was mixing with a THz wave to generate a radiation in the near-infrared region (i.e. an upconverted signal) through difference-frequency generation phase-matched in a ZnGeP2 crystal. By measuring the upconverted signal, we deduced the characteristics of the THz pulses participating in the frequency mixing. Specifically, we determined the range of the incident wavelengths, the minimum detectable energy per pulse, and the average linewidth of the THz pulses as 91–139 μm, 276 pJ, and 0.36 cm-1, respectively.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Shi and Y. J. Ding, "Chemical identification based on direct measurement of absorption spectrum by frequency-tuning monochromatic THz source," Laser Phys. Lett. 1, 560-564 (2004).
    [CrossRef]
  2. W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: Improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
    [CrossRef]
  3. See e.g., H. R. Fetterman, P. E. Tannenwald, B. J. Clifton, C. D. Parker, W. D. Fitzgerld, and N. R. Erickson, "Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers," Appl. Phys. Lett. 33, 151-154 (1978).
    [CrossRef]
  4. J. E. Oswald, T. Koch, I. Mehdi, A. Pease, R. J. Dengler, T. H. Lee, D. A. Humphrey, M. Kim, P. H. Siegel, M. A. Frerking, and N. R. Erickson, "Planar diode solid-state receiver for 557 GHz with state-of-the-art performance," IEEE Microwave Guid. Wave Lett. 8, 232-234 (1998).
    [CrossRef]
  5. W. Shi and Y. J. Ding, "A monochromatic and high-power THz source tunable in the ranges of 2.7-38.4 μm and 58.2-3540 μm for variety of potential applications," Appl. Phys. Lett. 84, 1635-1637 (2004).
    [CrossRef]
  6. R. W. Boyd, Nonlinear Optics (Academic, New York, 2003).
  7. W. Shi, Y. J. Ding, N. Fernelius, and F. K. Hopkins, "Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal," Appl. Phys. Lett. 88, 101101/1-3 (2006).
    [CrossRef]
  8. I. B. Zotova and Y. J. Ding, "Spectral measurements of two-photon absorption coefficients for CdSe and GaSe crystals," Appl. Opt. 40, 6654-6658 (2001).
    [CrossRef]

2004

W. Shi and Y. J. Ding, "Chemical identification based on direct measurement of absorption spectrum by frequency-tuning monochromatic THz source," Laser Phys. Lett. 1, 560-564 (2004).
[CrossRef]

W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: Improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
[CrossRef]

W. Shi and Y. J. Ding, "A monochromatic and high-power THz source tunable in the ranges of 2.7-38.4 μm and 58.2-3540 μm for variety of potential applications," Appl. Phys. Lett. 84, 1635-1637 (2004).
[CrossRef]

2001

1998

J. E. Oswald, T. Koch, I. Mehdi, A. Pease, R. J. Dengler, T. H. Lee, D. A. Humphrey, M. Kim, P. H. Siegel, M. A. Frerking, and N. R. Erickson, "Planar diode solid-state receiver for 557 GHz with state-of-the-art performance," IEEE Microwave Guid. Wave Lett. 8, 232-234 (1998).
[CrossRef]

1978

See e.g., H. R. Fetterman, P. E. Tannenwald, B. J. Clifton, C. D. Parker, W. D. Fitzgerld, and N. R. Erickson, "Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers," Appl. Phys. Lett. 33, 151-154 (1978).
[CrossRef]

Clifton, B. J.

See e.g., H. R. Fetterman, P. E. Tannenwald, B. J. Clifton, C. D. Parker, W. D. Fitzgerld, and N. R. Erickson, "Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers," Appl. Phys. Lett. 33, 151-154 (1978).
[CrossRef]

Dengler, R. J.

J. E. Oswald, T. Koch, I. Mehdi, A. Pease, R. J. Dengler, T. H. Lee, D. A. Humphrey, M. Kim, P. H. Siegel, M. A. Frerking, and N. R. Erickson, "Planar diode solid-state receiver for 557 GHz with state-of-the-art performance," IEEE Microwave Guid. Wave Lett. 8, 232-234 (1998).
[CrossRef]

Ding, Y. J.

W. Shi and Y. J. Ding, "A monochromatic and high-power THz source tunable in the ranges of 2.7-38.4 μm and 58.2-3540 μm for variety of potential applications," Appl. Phys. Lett. 84, 1635-1637 (2004).
[CrossRef]

W. Shi and Y. J. Ding, "Chemical identification based on direct measurement of absorption spectrum by frequency-tuning monochromatic THz source," Laser Phys. Lett. 1, 560-564 (2004).
[CrossRef]

W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: Improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
[CrossRef]

I. B. Zotova and Y. J. Ding, "Spectral measurements of two-photon absorption coefficients for CdSe and GaSe crystals," Appl. Opt. 40, 6654-6658 (2001).
[CrossRef]

Erickson, N. R.

J. E. Oswald, T. Koch, I. Mehdi, A. Pease, R. J. Dengler, T. H. Lee, D. A. Humphrey, M. Kim, P. H. Siegel, M. A. Frerking, and N. R. Erickson, "Planar diode solid-state receiver for 557 GHz with state-of-the-art performance," IEEE Microwave Guid. Wave Lett. 8, 232-234 (1998).
[CrossRef]

See e.g., H. R. Fetterman, P. E. Tannenwald, B. J. Clifton, C. D. Parker, W. D. Fitzgerld, and N. R. Erickson, "Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers," Appl. Phys. Lett. 33, 151-154 (1978).
[CrossRef]

Fetterman, H. R.

See e.g., H. R. Fetterman, P. E. Tannenwald, B. J. Clifton, C. D. Parker, W. D. Fitzgerld, and N. R. Erickson, "Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers," Appl. Phys. Lett. 33, 151-154 (1978).
[CrossRef]

Fitzgerld, W. D.

See e.g., H. R. Fetterman, P. E. Tannenwald, B. J. Clifton, C. D. Parker, W. D. Fitzgerld, and N. R. Erickson, "Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers," Appl. Phys. Lett. 33, 151-154 (1978).
[CrossRef]

Frerking, M. A.

J. E. Oswald, T. Koch, I. Mehdi, A. Pease, R. J. Dengler, T. H. Lee, D. A. Humphrey, M. Kim, P. H. Siegel, M. A. Frerking, and N. R. Erickson, "Planar diode solid-state receiver for 557 GHz with state-of-the-art performance," IEEE Microwave Guid. Wave Lett. 8, 232-234 (1998).
[CrossRef]

Humphrey, D. A.

J. E. Oswald, T. Koch, I. Mehdi, A. Pease, R. J. Dengler, T. H. Lee, D. A. Humphrey, M. Kim, P. H. Siegel, M. A. Frerking, and N. R. Erickson, "Planar diode solid-state receiver for 557 GHz with state-of-the-art performance," IEEE Microwave Guid. Wave Lett. 8, 232-234 (1998).
[CrossRef]

Kim, M.

J. E. Oswald, T. Koch, I. Mehdi, A. Pease, R. J. Dengler, T. H. Lee, D. A. Humphrey, M. Kim, P. H. Siegel, M. A. Frerking, and N. R. Erickson, "Planar diode solid-state receiver for 557 GHz with state-of-the-art performance," IEEE Microwave Guid. Wave Lett. 8, 232-234 (1998).
[CrossRef]

Koch, T.

J. E. Oswald, T. Koch, I. Mehdi, A. Pease, R. J. Dengler, T. H. Lee, D. A. Humphrey, M. Kim, P. H. Siegel, M. A. Frerking, and N. R. Erickson, "Planar diode solid-state receiver for 557 GHz with state-of-the-art performance," IEEE Microwave Guid. Wave Lett. 8, 232-234 (1998).
[CrossRef]

Lee, T. H.

J. E. Oswald, T. Koch, I. Mehdi, A. Pease, R. J. Dengler, T. H. Lee, D. A. Humphrey, M. Kim, P. H. Siegel, M. A. Frerking, and N. R. Erickson, "Planar diode solid-state receiver for 557 GHz with state-of-the-art performance," IEEE Microwave Guid. Wave Lett. 8, 232-234 (1998).
[CrossRef]

Mehdi, I.

J. E. Oswald, T. Koch, I. Mehdi, A. Pease, R. J. Dengler, T. H. Lee, D. A. Humphrey, M. Kim, P. H. Siegel, M. A. Frerking, and N. R. Erickson, "Planar diode solid-state receiver for 557 GHz with state-of-the-art performance," IEEE Microwave Guid. Wave Lett. 8, 232-234 (1998).
[CrossRef]

Oswald, J. E.

J. E. Oswald, T. Koch, I. Mehdi, A. Pease, R. J. Dengler, T. H. Lee, D. A. Humphrey, M. Kim, P. H. Siegel, M. A. Frerking, and N. R. Erickson, "Planar diode solid-state receiver for 557 GHz with state-of-the-art performance," IEEE Microwave Guid. Wave Lett. 8, 232-234 (1998).
[CrossRef]

Parker, C. D.

See e.g., H. R. Fetterman, P. E. Tannenwald, B. J. Clifton, C. D. Parker, W. D. Fitzgerld, and N. R. Erickson, "Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers," Appl. Phys. Lett. 33, 151-154 (1978).
[CrossRef]

Pease, A.

J. E. Oswald, T. Koch, I. Mehdi, A. Pease, R. J. Dengler, T. H. Lee, D. A. Humphrey, M. Kim, P. H. Siegel, M. A. Frerking, and N. R. Erickson, "Planar diode solid-state receiver for 557 GHz with state-of-the-art performance," IEEE Microwave Guid. Wave Lett. 8, 232-234 (1998).
[CrossRef]

Schunemann, P. G.

W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: Improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
[CrossRef]

Shi, W.

W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: Improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
[CrossRef]

W. Shi and Y. J. Ding, "A monochromatic and high-power THz source tunable in the ranges of 2.7-38.4 μm and 58.2-3540 μm for variety of potential applications," Appl. Phys. Lett. 84, 1635-1637 (2004).
[CrossRef]

W. Shi and Y. J. Ding, "Chemical identification based on direct measurement of absorption spectrum by frequency-tuning monochromatic THz source," Laser Phys. Lett. 1, 560-564 (2004).
[CrossRef]

Siegel, P. H.

J. E. Oswald, T. Koch, I. Mehdi, A. Pease, R. J. Dengler, T. H. Lee, D. A. Humphrey, M. Kim, P. H. Siegel, M. A. Frerking, and N. R. Erickson, "Planar diode solid-state receiver for 557 GHz with state-of-the-art performance," IEEE Microwave Guid. Wave Lett. 8, 232-234 (1998).
[CrossRef]

Tannenwald, P. E.

See e.g., H. R. Fetterman, P. E. Tannenwald, B. J. Clifton, C. D. Parker, W. D. Fitzgerld, and N. R. Erickson, "Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers," Appl. Phys. Lett. 33, 151-154 (1978).
[CrossRef]

Zotova, I. B.

Appl. Opt.

Appl. Phys. Lett.

W. Shi and Y. J. Ding, "A monochromatic and high-power THz source tunable in the ranges of 2.7-38.4 μm and 58.2-3540 μm for variety of potential applications," Appl. Phys. Lett. 84, 1635-1637 (2004).
[CrossRef]

See e.g., H. R. Fetterman, P. E. Tannenwald, B. J. Clifton, C. D. Parker, W. D. Fitzgerld, and N. R. Erickson, "Far-ir heterodyne radiometric measurements with quasioptical Schottky diode mixers," Appl. Phys. Lett. 33, 151-154 (1978).
[CrossRef]

IEEE Microwave Guid. Wave Lett.

J. E. Oswald, T. Koch, I. Mehdi, A. Pease, R. J. Dengler, T. H. Lee, D. A. Humphrey, M. Kim, P. H. Siegel, M. A. Frerking, and N. R. Erickson, "Planar diode solid-state receiver for 557 GHz with state-of-the-art performance," IEEE Microwave Guid. Wave Lett. 8, 232-234 (1998).
[CrossRef]

Laser Phys. Lett.

W. Shi and Y. J. Ding, "Chemical identification based on direct measurement of absorption spectrum by frequency-tuning monochromatic THz source," Laser Phys. Lett. 1, 560-564 (2004).
[CrossRef]

Opt. Commun.

W. Shi, Y. J. Ding, and P. G. Schunemann, "Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: Improvements on tuning ranges and peak powers," Opt. Commun. 233, 183-189 (2004).
[CrossRef]

Other

R. W. Boyd, Nonlinear Optics (Academic, New York, 2003).

W. Shi, Y. J. Ding, N. Fernelius, and F. K. Hopkins, "Observation of difference-frequency generation by mixing of terahertz and near-infrared laser beams in a GaSe crystal," Appl. Phys. Lett. 88, 101101/1-3 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Peak power for the upconverted signal measure by using an InGaAs photodiode vs. wavelength of the incident THz pulses after mixing them with Nd:YAG laser pulses. Modulation appearing in the spectrum was caused by the absorption of water vapor in the beam path.

Fig. 2.
Fig. 2.

Output power for the upconverted signal measured by using an InGaAs detector vs. incident THz power. Dots – data; solid line – linear fit.

Fig. 3.
Fig. 3.

Spectra of THz pulses measured by a TE-cooled photomultiplier tube at different central frequencies by using the frequency mixing process.

Fig. 4.
Fig. 4.

Linewidth of THz pulses were measured by a TE-cooled photomultiplier tube vs. slit width of spectrometer. At each slit width, linewidth was measured for several times. It is obvious that for the two lowest slit widths the ranges of the linewidths for the THz pulses measured by us significantly overlapped with each other.

Metrics