Abstract

Dynamic waveguides are induced beneath the surface of magnesium doped near-stoichiometric lithium tantalate by deep UV light at λ = 257 nm using the interband photorefractive effect. The waveguides can be reconfigured in 10 ms at UV intensities of 100 mW/cm2. We show the importance of the background illumination for the build-up of dynamic optical waveguides. We also present a new fixing process of the light-induced waveguide structures when the background light is absent. These quasi-fixed structures with dark decay times of several days are due to charges trapped in deep traps.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter, Nonlinear Optical Effects and Materials (Springer Series in Optical Science, Vol. 72, (Berlin Heidelberg New York 2000).
  2. O. Matoba, T. Inujima, T. Shimura, K. Kuroda, "Segmented photorefractive waveguides in LiNbO3:Fe," J. Opt. Soc. Am. B 15, 2006-2012 (1998).
    [CrossRef]
  3. P. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, "Fast, reconfigurable light-induced waveguides," Opt. Lett. 24, 1508-1510 (1999).
    [CrossRef]
  4. P. Zhang, J. Zhao, D. Yang, B. Li, C. Xu,"Optically induced photorefractive waveguides in KNSBN:Ce crystal," Opt. Mater. 23, 299-303 (2003).
    [CrossRef]
  5. J. W. Fleischer, M. Segev, N. K. Efremidis, D. N. Christodoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature,  422, 147-150 (2003).
    [CrossRef] [PubMed]
  6. A. Bruner, D. Eger, S. Ruschin, "Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO," J. Appl. Phys. 96, 7225-7448 (2004).
    [CrossRef]
  7. Z. Bai-Gang, Y. Jian-Quan, L. Yang, X. De-Gang, D. Xin, W. Peng, Z. Tie-Li and J. Feng, "High-efficiency single-pass cw quasi-phase-matched frequency doubling based on PP-MgO:SLT," Chinese Phys. 14, 353-358 (2005).
    [CrossRef]
  8. F. Juvalta, M Jazbinsek, P. Günter, K. Kitamura, "Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths," J. Opt. Soc. Am. B,  23, 276-281 (2006).
    [CrossRef]
  9. Y. W. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, and H. Hatano, "Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals," J. Appl. Phys. 95, 7637-7644 (2004).
    [CrossRef]
  10. P. Dittrich, B. Koziarska-Glinka, G. Montemezzani, P. Gunter, S. Takekawa, K. Kitamura, and Y. Furukawa, "Deep-ultraviolet interband photorefraction in lithium tantalate," J. Opt. Soc. Am. B 21, 632-639 (2004).
    [CrossRef]
  11. P. Dittrich, G. Montemezzani, M. Habu, M. Matsukura, S. Takekawa, K. Kitamura, P. Güunter, "Sub-millisecond interband photorefraction in magnesium doped lithium tantalate," Opt. Commun. 234, 131-136 (2004).
    [CrossRef]
  12. F. Juvalta, P. Dittrich, G. Montemezzani, M. Jazbinsek, P. Günter, S. Takekawa, K. Kitamura, "Holographic gratings in pure and Mg-doped near-stoichiometric LiTaO3 induced by deep-ultraviolet light," Proc. SPIE 6252, in press (2006).
  13. Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, "Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system," J. Crystal Growth 197, 889-895 (1999).
    [CrossRef]
  14. R. Mosimann, D. Haertle, M. Jazbinsek, G. Montemezzani, and P. Günter, "Determination of the absorption constant in the interband region by photocurrent measurements," Appl. Phys. B,  83, 114-119 (2006).
    [CrossRef]
  15. P. Günter and J. P. Huignard, Photorefractive materials and their applications 1: Basic effects (Springer Verlag, Berlin 2006).
    [CrossRef]
  16. P. Bernasconi, G. Montemezzani and P. Günter, "Off-bragg-angle light diffraction and structure of dynamic interband photorefractive gratings," Appl. Phys. B 68, 833-842 (1999).
    [CrossRef]
  17. D. Marcuse, "Modes of a symmetric slab optical waveguide in birefringent media," IEEE J. Quantum Electron. 14, 736-741 (1978).
    [CrossRef]

2006 (3)

F. Juvalta, M Jazbinsek, P. Günter, K. Kitamura, "Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths," J. Opt. Soc. Am. B,  23, 276-281 (2006).
[CrossRef]

F. Juvalta, P. Dittrich, G. Montemezzani, M. Jazbinsek, P. Günter, S. Takekawa, K. Kitamura, "Holographic gratings in pure and Mg-doped near-stoichiometric LiTaO3 induced by deep-ultraviolet light," Proc. SPIE 6252, in press (2006).

R. Mosimann, D. Haertle, M. Jazbinsek, G. Montemezzani, and P. Günter, "Determination of the absorption constant in the interband region by photocurrent measurements," Appl. Phys. B,  83, 114-119 (2006).
[CrossRef]

2005 (1)

Z. Bai-Gang, Y. Jian-Quan, L. Yang, X. De-Gang, D. Xin, W. Peng, Z. Tie-Li and J. Feng, "High-efficiency single-pass cw quasi-phase-matched frequency doubling based on PP-MgO:SLT," Chinese Phys. 14, 353-358 (2005).
[CrossRef]

2004 (4)

A. Bruner, D. Eger, S. Ruschin, "Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO," J. Appl. Phys. 96, 7225-7448 (2004).
[CrossRef]

Y. W. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, and H. Hatano, "Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals," J. Appl. Phys. 95, 7637-7644 (2004).
[CrossRef]

P. Dittrich, B. Koziarska-Glinka, G. Montemezzani, P. Gunter, S. Takekawa, K. Kitamura, and Y. Furukawa, "Deep-ultraviolet interband photorefraction in lithium tantalate," J. Opt. Soc. Am. B 21, 632-639 (2004).
[CrossRef]

P. Dittrich, G. Montemezzani, M. Habu, M. Matsukura, S. Takekawa, K. Kitamura, P. Güunter, "Sub-millisecond interband photorefraction in magnesium doped lithium tantalate," Opt. Commun. 234, 131-136 (2004).
[CrossRef]

2003 (2)

P. Zhang, J. Zhao, D. Yang, B. Li, C. Xu,"Optically induced photorefractive waveguides in KNSBN:Ce crystal," Opt. Mater. 23, 299-303 (2003).
[CrossRef]

J. W. Fleischer, M. Segev, N. K. Efremidis, D. N. Christodoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature,  422, 147-150 (2003).
[CrossRef] [PubMed]

1999 (3)

P. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, "Fast, reconfigurable light-induced waveguides," Opt. Lett. 24, 1508-1510 (1999).
[CrossRef]

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, "Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system," J. Crystal Growth 197, 889-895 (1999).
[CrossRef]

P. Bernasconi, G. Montemezzani and P. Günter, "Off-bragg-angle light diffraction and structure of dynamic interband photorefractive gratings," Appl. Phys. B 68, 833-842 (1999).
[CrossRef]

1998 (1)

1978 (1)

D. Marcuse, "Modes of a symmetric slab optical waveguide in birefringent media," IEEE J. Quantum Electron. 14, 736-741 (1978).
[CrossRef]

Bai-Gang, Z.

Z. Bai-Gang, Y. Jian-Quan, L. Yang, X. De-Gang, D. Xin, W. Peng, Z. Tie-Li and J. Feng, "High-efficiency single-pass cw quasi-phase-matched frequency doubling based on PP-MgO:SLT," Chinese Phys. 14, 353-358 (2005).
[CrossRef]

Bernasconi, P.

P. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, "Fast, reconfigurable light-induced waveguides," Opt. Lett. 24, 1508-1510 (1999).
[CrossRef]

P. Bernasconi, G. Montemezzani and P. Günter, "Off-bragg-angle light diffraction and structure of dynamic interband photorefractive gratings," Appl. Phys. B 68, 833-842 (1999).
[CrossRef]

Bruner, A.

A. Bruner, D. Eger, S. Ruschin, "Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO," J. Appl. Phys. 96, 7225-7448 (2004).
[CrossRef]

Christodoulides, D. N.

J. W. Fleischer, M. Segev, N. K. Efremidis, D. N. Christodoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature,  422, 147-150 (2003).
[CrossRef] [PubMed]

De-Gang, X.

Z. Bai-Gang, Y. Jian-Quan, L. Yang, X. De-Gang, D. Xin, W. Peng, Z. Tie-Li and J. Feng, "High-efficiency single-pass cw quasi-phase-matched frequency doubling based on PP-MgO:SLT," Chinese Phys. 14, 353-358 (2005).
[CrossRef]

Dittrich, P.

F. Juvalta, P. Dittrich, G. Montemezzani, M. Jazbinsek, P. Günter, S. Takekawa, K. Kitamura, "Holographic gratings in pure and Mg-doped near-stoichiometric LiTaO3 induced by deep-ultraviolet light," Proc. SPIE 6252, in press (2006).

P. Dittrich, B. Koziarska-Glinka, G. Montemezzani, P. Gunter, S. Takekawa, K. Kitamura, and Y. Furukawa, "Deep-ultraviolet interband photorefraction in lithium tantalate," J. Opt. Soc. Am. B 21, 632-639 (2004).
[CrossRef]

P. Dittrich, G. Montemezzani, M. Habu, M. Matsukura, S. Takekawa, K. Kitamura, P. Güunter, "Sub-millisecond interband photorefraction in magnesium doped lithium tantalate," Opt. Commun. 234, 131-136 (2004).
[CrossRef]

P. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, "Fast, reconfigurable light-induced waveguides," Opt. Lett. 24, 1508-1510 (1999).
[CrossRef]

Efremidis, N. K.

J. W. Fleischer, M. Segev, N. K. Efremidis, D. N. Christodoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature,  422, 147-150 (2003).
[CrossRef] [PubMed]

Eger, D.

A. Bruner, D. Eger, S. Ruschin, "Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO," J. Appl. Phys. 96, 7225-7448 (2004).
[CrossRef]

Feng, J.

Z. Bai-Gang, Y. Jian-Quan, L. Yang, X. De-Gang, D. Xin, W. Peng, Z. Tie-Li and J. Feng, "High-efficiency single-pass cw quasi-phase-matched frequency doubling based on PP-MgO:SLT," Chinese Phys. 14, 353-358 (2005).
[CrossRef]

Fleischer, J. W.

J. W. Fleischer, M. Segev, N. K. Efremidis, D. N. Christodoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature,  422, 147-150 (2003).
[CrossRef] [PubMed]

Furukawa, Y.

Y. W. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, and H. Hatano, "Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals," J. Appl. Phys. 95, 7637-7644 (2004).
[CrossRef]

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, "Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system," J. Crystal Growth 197, 889-895 (1999).
[CrossRef]

Günter, P.

R. Mosimann, D. Haertle, M. Jazbinsek, G. Montemezzani, and P. Günter, "Determination of the absorption constant in the interband region by photocurrent measurements," Appl. Phys. B,  83, 114-119 (2006).
[CrossRef]

F. Juvalta, P. Dittrich, G. Montemezzani, M. Jazbinsek, P. Günter, S. Takekawa, K. Kitamura, "Holographic gratings in pure and Mg-doped near-stoichiometric LiTaO3 induced by deep-ultraviolet light," Proc. SPIE 6252, in press (2006).

F. Juvalta, M Jazbinsek, P. Günter, K. Kitamura, "Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths," J. Opt. Soc. Am. B,  23, 276-281 (2006).
[CrossRef]

P. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, "Fast, reconfigurable light-induced waveguides," Opt. Lett. 24, 1508-1510 (1999).
[CrossRef]

P. Bernasconi, G. Montemezzani and P. Günter, "Off-bragg-angle light diffraction and structure of dynamic interband photorefractive gratings," Appl. Phys. B 68, 833-842 (1999).
[CrossRef]

Güunter, P.

P. Dittrich, G. Montemezzani, M. Habu, M. Matsukura, S. Takekawa, K. Kitamura, P. Güunter, "Sub-millisecond interband photorefraction in magnesium doped lithium tantalate," Opt. Commun. 234, 131-136 (2004).
[CrossRef]

Habu, M.

P. Dittrich, G. Montemezzani, M. Habu, M. Matsukura, S. Takekawa, K. Kitamura, P. Güunter, "Sub-millisecond interband photorefraction in magnesium doped lithium tantalate," Opt. Commun. 234, 131-136 (2004).
[CrossRef]

Haertle, D.

R. Mosimann, D. Haertle, M. Jazbinsek, G. Montemezzani, and P. Günter, "Determination of the absorption constant in the interband region by photocurrent measurements," Appl. Phys. B,  83, 114-119 (2006).
[CrossRef]

Hatano, H.

Y. W. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, and H. Hatano, "Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals," J. Appl. Phys. 95, 7637-7644 (2004).
[CrossRef]

Inujima, T.

Jazbinsek, M

Jazbinsek, M.

R. Mosimann, D. Haertle, M. Jazbinsek, G. Montemezzani, and P. Günter, "Determination of the absorption constant in the interband region by photocurrent measurements," Appl. Phys. B,  83, 114-119 (2006).
[CrossRef]

F. Juvalta, P. Dittrich, G. Montemezzani, M. Jazbinsek, P. Günter, S. Takekawa, K. Kitamura, "Holographic gratings in pure and Mg-doped near-stoichiometric LiTaO3 induced by deep-ultraviolet light," Proc. SPIE 6252, in press (2006).

Jian-Quan, Y.

Z. Bai-Gang, Y. Jian-Quan, L. Yang, X. De-Gang, D. Xin, W. Peng, Z. Tie-Li and J. Feng, "High-efficiency single-pass cw quasi-phase-matched frequency doubling based on PP-MgO:SLT," Chinese Phys. 14, 353-358 (2005).
[CrossRef]

Juvalta, F.

F. Juvalta, M Jazbinsek, P. Günter, K. Kitamura, "Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths," J. Opt. Soc. Am. B,  23, 276-281 (2006).
[CrossRef]

F. Juvalta, P. Dittrich, G. Montemezzani, M. Jazbinsek, P. Günter, S. Takekawa, K. Kitamura, "Holographic gratings in pure and Mg-doped near-stoichiometric LiTaO3 induced by deep-ultraviolet light," Proc. SPIE 6252, in press (2006).

Kitamura, K.

F. Juvalta, P. Dittrich, G. Montemezzani, M. Jazbinsek, P. Günter, S. Takekawa, K. Kitamura, "Holographic gratings in pure and Mg-doped near-stoichiometric LiTaO3 induced by deep-ultraviolet light," Proc. SPIE 6252, in press (2006).

F. Juvalta, M Jazbinsek, P. Günter, K. Kitamura, "Electro-optical properties of near-stoichiometric and congruent lithium tantalate at ultraviolet wavelengths," J. Opt. Soc. Am. B,  23, 276-281 (2006).
[CrossRef]

Y. W. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, and H. Hatano, "Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals," J. Appl. Phys. 95, 7637-7644 (2004).
[CrossRef]

P. Dittrich, G. Montemezzani, M. Habu, M. Matsukura, S. Takekawa, K. Kitamura, P. Güunter, "Sub-millisecond interband photorefraction in magnesium doped lithium tantalate," Opt. Commun. 234, 131-136 (2004).
[CrossRef]

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, "Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system," J. Crystal Growth 197, 889-895 (1999).
[CrossRef]

Koziarska-Glinka, B.

Kuroda, K.

Li, B.

P. Zhang, J. Zhao, D. Yang, B. Li, C. Xu,"Optically induced photorefractive waveguides in KNSBN:Ce crystal," Opt. Mater. 23, 299-303 (2003).
[CrossRef]

Liu, Y. W.

Y. W. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, and H. Hatano, "Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals," J. Appl. Phys. 95, 7637-7644 (2004).
[CrossRef]

Marcuse, D.

D. Marcuse, "Modes of a symmetric slab optical waveguide in birefringent media," IEEE J. Quantum Electron. 14, 736-741 (1978).
[CrossRef]

Matoba, O.

Matsukura, M.

P. Dittrich, G. Montemezzani, M. Habu, M. Matsukura, S. Takekawa, K. Kitamura, P. Güunter, "Sub-millisecond interband photorefraction in magnesium doped lithium tantalate," Opt. Commun. 234, 131-136 (2004).
[CrossRef]

Montemezzani, G.

F. Juvalta, P. Dittrich, G. Montemezzani, M. Jazbinsek, P. Günter, S. Takekawa, K. Kitamura, "Holographic gratings in pure and Mg-doped near-stoichiometric LiTaO3 induced by deep-ultraviolet light," Proc. SPIE 6252, in press (2006).

R. Mosimann, D. Haertle, M. Jazbinsek, G. Montemezzani, and P. Günter, "Determination of the absorption constant in the interband region by photocurrent measurements," Appl. Phys. B,  83, 114-119 (2006).
[CrossRef]

P. Dittrich, G. Montemezzani, M. Habu, M. Matsukura, S. Takekawa, K. Kitamura, P. Güunter, "Sub-millisecond interband photorefraction in magnesium doped lithium tantalate," Opt. Commun. 234, 131-136 (2004).
[CrossRef]

P. Dittrich, B. Koziarska-Glinka, G. Montemezzani, P. Gunter, S. Takekawa, K. Kitamura, and Y. Furukawa, "Deep-ultraviolet interband photorefraction in lithium tantalate," J. Opt. Soc. Am. B 21, 632-639 (2004).
[CrossRef]

P. Bernasconi, G. Montemezzani and P. Günter, "Off-bragg-angle light diffraction and structure of dynamic interband photorefractive gratings," Appl. Phys. B 68, 833-842 (1999).
[CrossRef]

P. Dittrich, G. Montemezzani, P. Bernasconi, and P. Günter, "Fast, reconfigurable light-induced waveguides," Opt. Lett. 24, 1508-1510 (1999).
[CrossRef]

Mosimann, R.

R. Mosimann, D. Haertle, M. Jazbinsek, G. Montemezzani, and P. Günter, "Determination of the absorption constant in the interband region by photocurrent measurements," Appl. Phys. B,  83, 114-119 (2006).
[CrossRef]

Nakamura, M.

Y. W. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, and H. Hatano, "Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals," J. Appl. Phys. 95, 7637-7644 (2004).
[CrossRef]

Niwa, K.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, "Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system," J. Crystal Growth 197, 889-895 (1999).
[CrossRef]

Peng, W.

Z. Bai-Gang, Y. Jian-Quan, L. Yang, X. De-Gang, D. Xin, W. Peng, Z. Tie-Li and J. Feng, "High-efficiency single-pass cw quasi-phase-matched frequency doubling based on PP-MgO:SLT," Chinese Phys. 14, 353-358 (2005).
[CrossRef]

Ruschin, S.

A. Bruner, D. Eger, S. Ruschin, "Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO," J. Appl. Phys. 96, 7225-7448 (2004).
[CrossRef]

Segev, M.

J. W. Fleischer, M. Segev, N. K. Efremidis, D. N. Christodoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature,  422, 147-150 (2003).
[CrossRef] [PubMed]

Shimura, T.

Suzuki, E.

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, "Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system," J. Crystal Growth 197, 889-895 (1999).
[CrossRef]

Takekawa, S.

F. Juvalta, P. Dittrich, G. Montemezzani, M. Jazbinsek, P. Günter, S. Takekawa, K. Kitamura, "Holographic gratings in pure and Mg-doped near-stoichiometric LiTaO3 induced by deep-ultraviolet light," Proc. SPIE 6252, in press (2006).

P. Dittrich, G. Montemezzani, M. Habu, M. Matsukura, S. Takekawa, K. Kitamura, P. Güunter, "Sub-millisecond interband photorefraction in magnesium doped lithium tantalate," Opt. Commun. 234, 131-136 (2004).
[CrossRef]

Y. W. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, and H. Hatano, "Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals," J. Appl. Phys. 95, 7637-7644 (2004).
[CrossRef]

Tie-Li, Z.

Z. Bai-Gang, Y. Jian-Quan, L. Yang, X. De-Gang, D. Xin, W. Peng, Z. Tie-Li and J. Feng, "High-efficiency single-pass cw quasi-phase-matched frequency doubling based on PP-MgO:SLT," Chinese Phys. 14, 353-358 (2005).
[CrossRef]

Xin, D.

Z. Bai-Gang, Y. Jian-Quan, L. Yang, X. De-Gang, D. Xin, W. Peng, Z. Tie-Li and J. Feng, "High-efficiency single-pass cw quasi-phase-matched frequency doubling based on PP-MgO:SLT," Chinese Phys. 14, 353-358 (2005).
[CrossRef]

Xu, C.

P. Zhang, J. Zhao, D. Yang, B. Li, C. Xu,"Optically induced photorefractive waveguides in KNSBN:Ce crystal," Opt. Mater. 23, 299-303 (2003).
[CrossRef]

Yang, D.

P. Zhang, J. Zhao, D. Yang, B. Li, C. Xu,"Optically induced photorefractive waveguides in KNSBN:Ce crystal," Opt. Mater. 23, 299-303 (2003).
[CrossRef]

Yang, L.

Z. Bai-Gang, Y. Jian-Quan, L. Yang, X. De-Gang, D. Xin, W. Peng, Z. Tie-Li and J. Feng, "High-efficiency single-pass cw quasi-phase-matched frequency doubling based on PP-MgO:SLT," Chinese Phys. 14, 353-358 (2005).
[CrossRef]

Zhang, P.

P. Zhang, J. Zhao, D. Yang, B. Li, C. Xu,"Optically induced photorefractive waveguides in KNSBN:Ce crystal," Opt. Mater. 23, 299-303 (2003).
[CrossRef]

Zhao, J.

P. Zhang, J. Zhao, D. Yang, B. Li, C. Xu,"Optically induced photorefractive waveguides in KNSBN:Ce crystal," Opt. Mater. 23, 299-303 (2003).
[CrossRef]

Appl. Phys. B (2)

R. Mosimann, D. Haertle, M. Jazbinsek, G. Montemezzani, and P. Günter, "Determination of the absorption constant in the interband region by photocurrent measurements," Appl. Phys. B,  83, 114-119 (2006).
[CrossRef]

P. Bernasconi, G. Montemezzani and P. Günter, "Off-bragg-angle light diffraction and structure of dynamic interband photorefractive gratings," Appl. Phys. B 68, 833-842 (1999).
[CrossRef]

Chinese Phys. (1)

Z. Bai-Gang, Y. Jian-Quan, L. Yang, X. De-Gang, D. Xin, W. Peng, Z. Tie-Li and J. Feng, "High-efficiency single-pass cw quasi-phase-matched frequency doubling based on PP-MgO:SLT," Chinese Phys. 14, 353-358 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Marcuse, "Modes of a symmetric slab optical waveguide in birefringent media," IEEE J. Quantum Electron. 14, 736-741 (1978).
[CrossRef]

J. Appl. Phys. (2)

A. Bruner, D. Eger, S. Ruschin, "Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO," J. Appl. Phys. 96, 7225-7448 (2004).
[CrossRef]

Y. W. Liu, K. Kitamura, S. Takekawa, M. Nakamura, Y. Furukawa, and H. Hatano, "Two-color photorefractive properties in near-stoichiometric lithium tantalate crystals," J. Appl. Phys. 95, 7637-7644 (2004).
[CrossRef]

J. Crystal Growth (1)

Y. Furukawa, K. Kitamura, E. Suzuki, and K. Niwa, "Stoichiometric LiTaO3 single crystal growth by double crucible Czochralski method using automatic powder supply system," J. Crystal Growth 197, 889-895 (1999).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nature (1)

J. W. Fleischer, M. Segev, N. K. Efremidis, D. N. Christodoulides, "Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices," Nature,  422, 147-150 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

P. Dittrich, G. Montemezzani, M. Habu, M. Matsukura, S. Takekawa, K. Kitamura, P. Güunter, "Sub-millisecond interband photorefraction in magnesium doped lithium tantalate," Opt. Commun. 234, 131-136 (2004).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

P. Zhang, J. Zhao, D. Yang, B. Li, C. Xu,"Optically induced photorefractive waveguides in KNSBN:Ce crystal," Opt. Mater. 23, 299-303 (2003).
[CrossRef]

Proc. SPIE (1)

F. Juvalta, P. Dittrich, G. Montemezzani, M. Jazbinsek, P. Günter, S. Takekawa, K. Kitamura, "Holographic gratings in pure and Mg-doped near-stoichiometric LiTaO3 induced by deep-ultraviolet light," Proc. SPIE 6252, in press (2006).

Other (2)

P. Günter, Nonlinear Optical Effects and Materials (Springer Series in Optical Science, Vol. 72, (Berlin Heidelberg New York 2000).

P. Günter and J. P. Huignard, Photorefractive materials and their applications 1: Basic effects (Springer Verlag, Berlin 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Simplified electric field and refractive index distribution in a photorefractive crystal for the generation of light induced waveguides by band-to-band excitation: Unperturbed state with refractive index n 0.External field E 0 decreases the refractive index homogeneously by Δn.UV-excited charges screen the external field and produce a waveguide.

Fig. 2.
Fig. 2.

Top (a) and front (b) views of the experimental set-up for producing light induced waveguides (schematic). L1 and L2 are spherical lenses, CL1 and CL2 cylindrical lenses, BS beam splitters, M mirror, U the applied voltage.

Fig. 3.
Fig. 3.

Left: Diffraction efficiency η as a function of the depth of the readout beam d beneath the illuminated surface measured during recording of the grating (open squares) and after blocking the UV writing beams (filled circles). The shaded regions indicate the inter-band dominated grating (light shading) and the trap dominated grating (dark shading) as explained in the text. One can clearly see, that the fixed grating is located at the depth of the trap dominated grating. Right: Set-up and crystal orientation for diffraction measurements in the transverse geometry.

Fig. 4.
Fig. 4.

Top, CCD images of the intensity distribution of the He-Ne probe beam at the exit face of the biased crystal. Bottom, one dimensional beam profiles along the white dashed arrows. The left-side images correspond to the situation with UV illumination off, while for the right side images the UV illumination was on.

Fig. 5.
Fig. 5.

a) Build-up times (τb ) and decay times (τd ) of the light induced waveguides as defined in Eq. (6) for different controlling UV-intensities at the crystal surface. During the decay the crystal was still illuminated with the background UV light of IBKG = 7 mW/cm2. b) Decay times for different background UV intensities for a fixed controlling light intensity IUV = 100 mW/cm2.

Fig. 6.
Fig. 6.

Top: Peak intensity of the read-out beam at the crystal output surface as a function of time showing the dynamics of waveguide formation in Mg:SLT when the background UV illumination was absent. Bottom: Schematic illustration of the processes (a)–(f) responsible for the observed dynamics. The solid lines represent the change of index profile n, the dashed lines the electric field E. The thin lines indicate n = n 0 and E = 0, which are the initial values. The dotted arrows point towards the direction of the electric field, while the solid arrows indicate the enlargement direction of the structure. Detailed explanations of the processes (a) to (f) are given in the text.

Fig. 7.
Fig. 7.

a) In absence of the UV background illumination, we obtained a quasi fixed waveguide after switching off the UV controlling light just after the build-up at stage (b) of Fig. 7. The figure shows the evolution of the quasi-fixed waveguide under continuous readout. b) Beam profile of the probe light exiting the double waveguide that we obtained when switching off the UV contolling light after the fast screening at stage (e) of Fig. 7.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ n = n 3 2 r eff E ,
( N 1 ) π 2 = k d 2 n 2 n 3 n 3 2 n ̄ 3 2 V ,
I ( z ) = I 0 cos 2 ( κz ) z [ d 2 , d 2 ]
tan ( κd 2 ) = n 2 n 3 n ̄ 2 n ̄ 3 ( 2 V κd ) 2 1 .
W FWHM = π 2 κ
I = I 1 ( 1 e t τ 1 ) + I 2 ( 1 e t τ 2 ) .
τ b = ε ε 0 σ ph = ε ε 0 e μ e n + e μ h p ,

Metrics