Abstract

The design, testing and operation of a system for telecentric imaging of dynamic objects is presented. The simple system is capable of rapid electronic scanning of a single focal plane within a specimen or of simultaneous focusing on multiple planes whose depth and relative spacing within the specimen can be changed electronically. Application to studies of dynamic processes in microscopy is considered.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Bradburn, W.T. Cathey, and E.R. Dowski, "Realizations of focus invariance in optical digital systems with wave-front coding," Appl. Opt. 36, 9157-9166 (1997).
    [CrossRef]
  2. G. Muyo and A.R. Harvey, "Wavefront coding for athermalization of infrared imaging systems," in Electro-optical and infrared systems: technology and applications, R.G. Driggers and D.A. Huckridge, eds. (Proc. SPIE 5612, 227-235, 2004)
    [CrossRef]
  3. P. Marquet,  et al., "Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy," Opt. Lett. 30, 468-470 (2005).
    [CrossRef] [PubMed]
  4. D.J. Stephens and V.J. Allan, "Light microscopy techniques for live cell imaging," Science 300, 82-86 (2003).
    [CrossRef] [PubMed]
  5. P.M. Blanchard and A.H. Greenaway, "Simultaneous multiplane imaging with a distorted diffraction grating," Appl. Opt. 38, 6692-6699 (1999).
    [CrossRef]
  6. P.M. Blanchard and A.H. Greenaway, "Broadband simultaneous multiplane imaging," Opt. Commun 183, 29-36 (2000).
    [CrossRef]
  7. G. Seisenberger,  et al., "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929-1932 (2001).
    [CrossRef] [PubMed]
  8. A.K. Warner, J.H. Keen, and Y.L. Wang, "Dynamics of membrane clathrin-coated structures during cytokinesis," Traffic 7, 205-215 (2006).
    [CrossRef] [PubMed]
  9. C.E. Towers,  et al., "Three dimensional particle imaging by wave-front sensing," Opt. Lett. 31, 1220-1222 (2006).
    [CrossRef] [PubMed]
  10. E. Hecht, "Optics" (Addison Wesley Publishing Co., 1997)
  11. Melles Griot, "Optics Guide", http://www.mellesgriot.com/products/optics/toc.htm, (accessed March 2006)
  12. A.F. Naumov, G.D. Love, M.Yu. Loktev and F.L. Vladimirov, "Control optimization of spherical modal liquid crystal lenses," Opt. Express 4, 344-352 (1999).
    [CrossRef] [PubMed]
  13. L. Saurei,  et al., "Tunable liquid lens based on electrowetting technology : principle, properties and applications," presented at the 10th Annual Micro-optics Conference, Jena, Germany, 1-3 Sept 2004.
  14. P. Kurczynski, H.M. Dyson, and B. Sadoulet, "Large amplitude wavefront generation and correction with membrane mirrors," Opt. Express 14, 509-517 (2006).
    [CrossRef] [PubMed]
  15. S. Djidel and A.H. Greenaway, "Nanometric wavefront sensing," in 3rd International Workshop on Adaptive Optics in Industry and Medicine, S.R. Restaino and S. Teare eds. (Starline Printing Inc., 2002).
  16. A.K. Kirby and G.D. Love, "Fast, large and controllable phase modulation using dual frequency liquid crystals," Opt. Express 12, 1470-1475 (2004).
    [CrossRef] [PubMed]
  17. A.J. Wright,  et al., "Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror," Opt. Express 14, 222-228 (2005).
    [CrossRef]

2006

2005

2004

2003

D.J. Stephens and V.J. Allan, "Light microscopy techniques for live cell imaging," Science 300, 82-86 (2003).
[CrossRef] [PubMed]

2001

G. Seisenberger,  et al., "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929-1932 (2001).
[CrossRef] [PubMed]

2000

P.M. Blanchard and A.H. Greenaway, "Broadband simultaneous multiplane imaging," Opt. Commun 183, 29-36 (2000).
[CrossRef]

1999

1997

Allan, V.J.

D.J. Stephens and V.J. Allan, "Light microscopy techniques for live cell imaging," Science 300, 82-86 (2003).
[CrossRef] [PubMed]

Blanchard, P.M.

P.M. Blanchard and A.H. Greenaway, "Broadband simultaneous multiplane imaging," Opt. Commun 183, 29-36 (2000).
[CrossRef]

P.M. Blanchard and A.H. Greenaway, "Simultaneous multiplane imaging with a distorted diffraction grating," Appl. Opt. 38, 6692-6699 (1999).
[CrossRef]

Bradburn, S.

Cathey, W.T.

Dowski, E.R.

Dyson, H.M.

Greenaway, A.H.

P.M. Blanchard and A.H. Greenaway, "Broadband simultaneous multiplane imaging," Opt. Commun 183, 29-36 (2000).
[CrossRef]

P.M. Blanchard and A.H. Greenaway, "Simultaneous multiplane imaging with a distorted diffraction grating," Appl. Opt. 38, 6692-6699 (1999).
[CrossRef]

Keen, J.H.

A.K. Warner, J.H. Keen, and Y.L. Wang, "Dynamics of membrane clathrin-coated structures during cytokinesis," Traffic 7, 205-215 (2006).
[CrossRef] [PubMed]

Kirby, A.K.

Kurczynski, P.

Loktev, M.Yu.

Love, G.D.

Marquet, P.

Naumov, A.F.

Sadoulet, B.

Seisenberger, G.

G. Seisenberger,  et al., "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929-1932 (2001).
[CrossRef] [PubMed]

Stephens, D.J.

D.J. Stephens and V.J. Allan, "Light microscopy techniques for live cell imaging," Science 300, 82-86 (2003).
[CrossRef] [PubMed]

Towers, C.E.

Vladimirov, F.L.

Wang, Y.L.

A.K. Warner, J.H. Keen, and Y.L. Wang, "Dynamics of membrane clathrin-coated structures during cytokinesis," Traffic 7, 205-215 (2006).
[CrossRef] [PubMed]

Warner, A.K.

A.K. Warner, J.H. Keen, and Y.L. Wang, "Dynamics of membrane clathrin-coated structures during cytokinesis," Traffic 7, 205-215 (2006).
[CrossRef] [PubMed]

Wright, A.J.

Appl. Opt.

Opt. Commun

P.M. Blanchard and A.H. Greenaway, "Broadband simultaneous multiplane imaging," Opt. Commun 183, 29-36 (2000).
[CrossRef]

Opt. Express

Opt. Lett.

Science

D.J. Stephens and V.J. Allan, "Light microscopy techniques for live cell imaging," Science 300, 82-86 (2003).
[CrossRef] [PubMed]

G. Seisenberger,  et al., "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929-1932 (2001).
[CrossRef] [PubMed]

Traffic

A.K. Warner, J.H. Keen, and Y.L. Wang, "Dynamics of membrane clathrin-coated structures during cytokinesis," Traffic 7, 205-215 (2006).
[CrossRef] [PubMed]

Other

G. Muyo and A.R. Harvey, "Wavefront coding for athermalization of infrared imaging systems," in Electro-optical and infrared systems: technology and applications, R.G. Driggers and D.A. Huckridge, eds. (Proc. SPIE 5612, 227-235, 2004)
[CrossRef]

E. Hecht, "Optics" (Addison Wesley Publishing Co., 1997)

Melles Griot, "Optics Guide", http://www.mellesgriot.com/products/optics/toc.htm, (accessed March 2006)

L. Saurei,  et al., "Tunable liquid lens based on electrowetting technology : principle, properties and applications," presented at the 10th Annual Micro-optics Conference, Jena, Germany, 1-3 Sept 2004.

S. Djidel and A.H. Greenaway, "Nanometric wavefront sensing," in 3rd International Workshop on Adaptive Optics in Industry and Medicine, S.R. Restaino and S. Teare eds. (Starline Printing Inc., 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the optical system

Fig. 2.
Fig. 2.

The distance to the in-focus object plane, for each diffraction order, as a function of the separation between the lens and the off-axis Fresnel lens.

Fig. 3.
Fig. 3.

The distance to the in-focus object plane, for each diffraction order, as a function of the separation between the lens and the off-axis Fresnel lens using a USAF bar chart as the object.

Fig.4.
Fig.4.

Magnification plot for experiment 2 showing image magnification in the diffraction orders as a function of lens to off-axis Fresnel lens separation.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

1 f = 1 u + 1 v ,
m = v u = f v f .
f c = f 1 f 2 f 1 + f 2 s ,
p 1 = s f 1 f 1 + f 2 s
p 2 = s ( f 1 s ) f 1 + f 2 s
m = ( f 1 s ) ( v s ) f 1 f 2 + v f 1 f 1 .
u = f c ( v p 2 ) v p 2 f c p 1 .
f c = f 1
p 1 = f 1 2 f 2 .
p 2 = 0
u = v f 1 v f 1 f 1 2 f 2 .
Δ z q = f 1 2 q f 2
f c = f 1
p 1 = f 1 2 p f q = f 1 2 f p + f 1 2 q f 2 .
p 2 = 0

Metrics