Abstract

We designed and analysed a new structure for the realization of left-handed metamaterials in the GHz region. The material is composed of pairs of metallic crosses and reveals improved polarization behavior. Left-handed properties can be observed as long as the electrical field vector is located in the plane of the crosses. Negative refraction as indication for simultaneous negative effective ε and μ is numerically verified by direct comparison of the wavefronts inside and outside the metamaterial at nonzero angles of incidence.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |

  1. 1. V. D. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968).
    [CrossRef]
  2. 2. J. B. Pendry, A. J. Holden, W. J Stewart, and I. Young, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., 76, 4773-4776 (1996).
    [CrossRef] [PubMed]
  3. 3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter 10, 4785-4809 (1998).
    [CrossRef]
  4. 4. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
    [CrossRef]
  5. 5. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
    [CrossRef] [PubMed]
  6. 6. D. R. Smith, S Schultz, P. Markoš, and C. M. Soukoulis, "Determination of the effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
    [CrossRef]
  7. 7. P. Markoš, and C. M. Soukoulis, "Numerical studies of left-handed materials and arrays of split ring resonators," Phys. Rev. E 65, 036622 (2002).
    [CrossRef]
  8. 8. P. Markoš, I. Rousochatzakis, and C. M. Soukoulis, "Transmission losses in left-handed materials," Phys. Rev. E 66, 045601 (2002).
    [CrossRef]
  9. 9. T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Phys. Rev. E 68, 065602 (2003).
    [CrossRef]
  10. 10. T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett. 93, 107402 (2004).
    [CrossRef] [PubMed]
  11. 11. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev: "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
    [CrossRef]
  12. 12. A. N. Lagarkov and A. K. Sarychev: "Electromagnetic properties of composites containing elongated conducting inclusions," Phys. Rev. B 53, 6318-6336 (1996).
    [CrossRef]
  13. 13. Y. Svirko, N. I. Zheludev, and M. Osipov: "Layered chiral metallic microstructures with inductive coupling," Appl. Phys. Lett. 78, 498-500 (2001).
    [CrossRef]
  14. 14. G. Dolling, C. Enkrich, M. Wegener, J. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
    [CrossRef] [PubMed]
  15. 15. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
    [CrossRef] [PubMed]
  16. 16. R. A. Silin, "Possibility of creating plane-parallel lenses," Opt. Spektrosk. 44, 189-191 (1978).
  17. 17. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  18. 18. B. -I. Popa and S. A. Cummer, "Direct measurement of evanescent wave enhancement inside passive metamaterials," Phys. Rev. E 73, 016617 (2006).
    [CrossRef]
  19. 19. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, "Planar electromagnetic metamaterial with a fish scale structure," Phys. Rev. E 72, 056613 (2005).
    [CrossRef]
  20. 20. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," www.sciencemag.org (2006).
    [CrossRef]
  21. 21. U. Leonhardt, "Optical conformal mapping," www.sciencemag.org (2006).
    [CrossRef]
  22. 22. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic coupling," (2006), http://lanl.arxiv.org/abs/physics/0604105.
  23. 23. A. F. Starr, P. M. Rye, D. R. Smith, and S. Nemat-Nasser, "Fabrication and characterization of a negative-refractive-index composite metamaterial," Phys. Rev. B 70, 113102 (2004).
    [CrossRef]
  24. 24. B.-I. Popa and S. A. Cummer, "Determining the effective electromagnetic properties of negative-refractive-index metamaterials from internal fields," Phys. Rev. B 72, 165102 (2005).
    [CrossRef]

Other (24)

1. V. D. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp. 10, 509-514 (1968).
[CrossRef]

2. J. B. Pendry, A. J. Holden, W. J Stewart, and I. Young, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., 76, 4773-4776 (1996).
[CrossRef] [PubMed]

3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Steward, "Low frequency plasmons in thin-wire structures," J. Phys.: Condens. Matter 10, 4785-4809 (1998).
[CrossRef]

4. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999).
[CrossRef]

5. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000).
[CrossRef] [PubMed]

6. D. R. Smith, S Schultz, P. Markoš, and C. M. Soukoulis, "Determination of the effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

7. P. Markoš, and C. M. Soukoulis, "Numerical studies of left-handed materials and arrays of split ring resonators," Phys. Rev. E 65, 036622 (2002).
[CrossRef]

8. P. Markoš, I. Rousochatzakis, and C. M. Soukoulis, "Transmission losses in left-handed materials," Phys. Rev. E 66, 045601 (2002).
[CrossRef]

9. T. Koschny, P. Markoš, D. R. Smith, and C. M. Soukoulis, "Resonant and antiresonant frequency dependence of the effective parameters of metamaterials," Phys. Rev. E 68, 065602 (2003).
[CrossRef]

10. T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett. 93, 107402 (2004).
[CrossRef] [PubMed]

11. V. M. Shalaev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev: "Negative index of refraction in optical metamaterials," Opt. Lett. 30, 3356-3358 (2005).
[CrossRef]

12. A. N. Lagarkov and A. K. Sarychev: "Electromagnetic properties of composites containing elongated conducting inclusions," Phys. Rev. B 53, 6318-6336 (1996).
[CrossRef]

13. Y. Svirko, N. I. Zheludev, and M. Osipov: "Layered chiral metallic microstructures with inductive coupling," Appl. Phys. Lett. 78, 498-500 (2001).
[CrossRef]

14. G. Dolling, C. Enkrich, M. Wegener, J. Zhou, C. M. Soukoulis, and S. Linden, "Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials," Opt. Lett. 30, 3198-3200 (2005).
[CrossRef] [PubMed]

15. S. Zhang, W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett. 95, 137404 (2005).
[CrossRef] [PubMed]

16. R. A. Silin, "Possibility of creating plane-parallel lenses," Opt. Spektrosk. 44, 189-191 (1978).

17. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

18. B. -I. Popa and S. A. Cummer, "Direct measurement of evanescent wave enhancement inside passive metamaterials," Phys. Rev. E 73, 016617 (2006).
[CrossRef]

19. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, "Planar electromagnetic metamaterial with a fish scale structure," Phys. Rev. E 72, 056613 (2005).
[CrossRef]

20. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," www.sciencemag.org (2006).
[CrossRef]

21. U. Leonhardt, "Optical conformal mapping," www.sciencemag.org (2006).
[CrossRef]

22. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic coupling," (2006), http://lanl.arxiv.org/abs/physics/0604105.

23. A. F. Starr, P. M. Rye, D. R. Smith, and S. Nemat-Nasser, "Fabrication and characterization of a negative-refractive-index composite metamaterial," Phys. Rev. B 70, 113102 (2004).
[CrossRef]

24. B.-I. Popa and S. A. Cummer, "Determining the effective electromagnetic properties of negative-refractive-index metamaterials from internal fields," Phys. Rev. B 72, 165102 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a). Layout of the metamaterial: extract with three elementary cells; (b, c) parameters of the structure: l = 5mm, s = 0.5mm, b = d = 0,2mm, a = 0.5mm and z = 1.6mm.

Fig. 2.
Fig. 2.

Simulated transmission coefficient in dB for one cross per elementary cell (blue; dark gray) and for two crosses per cell (green; light gray).

Fig. 3.
Fig. 3.

Simulated transmission coefficient in dB for a plane wave incident perpendicular (green; light gray) and incident at an angle of 40° (blue; dark gray).

Fig. 4.
Fig. 4.

Simulated field distribution at a frequency of 27.11GHz for an angle of incidence of 15°. The dashed lines represent the inclination of the wavefronts in the metamaterial according to the retrieved value for the effective index of refraction of - 1.31.

Fig. 5.
Fig. 5.

Field distribution at 27.11GHz for an angle of incidence of 30°. The dashed lines represent again the inclination of the wavefronts as a result of the parameter retrieval at this frequency.

Fig. 6.
Fig. 6.

Simulated transmission coefficient in dB for the cross pairs modeled as perfect electrical conductors (blue, dark gray) and for the cross pairs made of gold (green, light gray).

Metrics