Abstract

We demonstrate a polarization maintaining, figure-eight erbium-doped fiber laser with a dispersion managed cavity. The laser was passively modelocked and produced pulses that were de-chirped to 427 fs pulses outside the laser cavity. An intra-cavity amplitude modulator was used to initiate the pulses, but the modulator was turned off during femtosecond pulse operation.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M.W. Phillips, "Selfstarting, Passively Modelocked Erbium Fibre Ring Laser Based on the Amplifying Sagnac Switch," Electron. Lett. 27, 542-544 (1991).
    [CrossRef]
  2. I. N. Duling, "Subpicosecond All-Fibre Erbium Laser," Electron. Lett. 27, 544 (1991).
    [CrossRef]
  3. I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, "Operation of a Nonlinear Loop Mirror in a Laser Cavity," IEEE J. Quantum Electron. 30, 194-199 (1994).
    [CrossRef]
  4. I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, "Ultra-Compact Dispersion Compensated Femtosecond Fiber Oscillators and Amplifiers," in Conference on Lasers and Electro-Optics, p. CThG1 (OSA, 2005).
  5. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-Fs Pulse Generation from a Stretched-Pulse Mode- Locked All-Fiber Ring Laser," Opt. Lett. 18, 1080-1082 (1993).
    [CrossRef] [PubMed]
  6. D. Taverner, D. J. Richardson, and D. N. Payne, "Polarisation Maintaining Figure-8 Laser," in Nonlinear Guided Wave Phenomenon, pp. WC-3 (Cambridge, 1993).
  7. M. L. Dennis and I. N. Duling, "Exerimental Study of Sideband Generation in Femtosecond Fiber Lasers," IEEE J. Quantum Electron. 30, 1469-1477 (1994).
    [CrossRef]
  8. G. Sluyterman and U . Röpke, "Comparison of Numerical Simulation of a Polarization-Maintaining Figure-Eight Laser with Experiment," in Conference on Lasers and Electro-Optics, p. CWA6 (OSA, 1999).</conf>

1994 (2)

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, "Operation of a Nonlinear Loop Mirror in a Laser Cavity," IEEE J. Quantum Electron. 30, 194-199 (1994).
[CrossRef]

M. L. Dennis and I. N. Duling, "Exerimental Study of Sideband Generation in Femtosecond Fiber Lasers," IEEE J. Quantum Electron. 30, 1469-1477 (1994).
[CrossRef]

1993 (1)

1991 (2)

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M.W. Phillips, "Selfstarting, Passively Modelocked Erbium Fibre Ring Laser Based on the Amplifying Sagnac Switch," Electron. Lett. 27, 542-544 (1991).
[CrossRef]

I. N. Duling, "Subpicosecond All-Fibre Erbium Laser," Electron. Lett. 27, 544 (1991).
[CrossRef]

Chen, C.-J.

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, "Operation of a Nonlinear Loop Mirror in a Laser Cavity," IEEE J. Quantum Electron. 30, 194-199 (1994).
[CrossRef]

Dennis, M. L.

M. L. Dennis and I. N. Duling, "Exerimental Study of Sideband Generation in Femtosecond Fiber Lasers," IEEE J. Quantum Electron. 30, 1469-1477 (1994).
[CrossRef]

Duling, I. N.

M. L. Dennis and I. N. Duling, "Exerimental Study of Sideband Generation in Femtosecond Fiber Lasers," IEEE J. Quantum Electron. 30, 1469-1477 (1994).
[CrossRef]

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, "Operation of a Nonlinear Loop Mirror in a Laser Cavity," IEEE J. Quantum Electron. 30, 194-199 (1994).
[CrossRef]

I. N. Duling, "Subpicosecond All-Fibre Erbium Laser," Electron. Lett. 27, 544 (1991).
[CrossRef]

Haus, H. A.

Ippen, E. P.

Laming, R. I.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M.W. Phillips, "Selfstarting, Passively Modelocked Erbium Fibre Ring Laser Based on the Amplifying Sagnac Switch," Electron. Lett. 27, 542-544 (1991).
[CrossRef]

Matsas, V.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M.W. Phillips, "Selfstarting, Passively Modelocked Erbium Fibre Ring Laser Based on the Amplifying Sagnac Switch," Electron. Lett. 27, 542-544 (1991).
[CrossRef]

Menyuk, C. R.

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, "Operation of a Nonlinear Loop Mirror in a Laser Cavity," IEEE J. Quantum Electron. 30, 194-199 (1994).
[CrossRef]

Nelson, L. E.

Payne, D. N.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M.W. Phillips, "Selfstarting, Passively Modelocked Erbium Fibre Ring Laser Based on the Amplifying Sagnac Switch," Electron. Lett. 27, 542-544 (1991).
[CrossRef]

Phillips, M.W.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M.W. Phillips, "Selfstarting, Passively Modelocked Erbium Fibre Ring Laser Based on the Amplifying Sagnac Switch," Electron. Lett. 27, 542-544 (1991).
[CrossRef]

Richardson, D. J.

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M.W. Phillips, "Selfstarting, Passively Modelocked Erbium Fibre Ring Laser Based on the Amplifying Sagnac Switch," Electron. Lett. 27, 542-544 (1991).
[CrossRef]

Tamura, K.

Wai, P. K. A.

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, "Operation of a Nonlinear Loop Mirror in a Laser Cavity," IEEE J. Quantum Electron. 30, 194-199 (1994).
[CrossRef]

Electron. Lett. (2)

D. J. Richardson, R. I. Laming, D. N. Payne, V. Matsas, and M.W. Phillips, "Selfstarting, Passively Modelocked Erbium Fibre Ring Laser Based on the Amplifying Sagnac Switch," Electron. Lett. 27, 542-544 (1991).
[CrossRef]

I. N. Duling, "Subpicosecond All-Fibre Erbium Laser," Electron. Lett. 27, 544 (1991).
[CrossRef]

IEEE J. Quantum Electron. (2)

I. N. Duling, C.-J. Chen, P. K. A. Wai, and C. R. Menyuk, "Operation of a Nonlinear Loop Mirror in a Laser Cavity," IEEE J. Quantum Electron. 30, 194-199 (1994).
[CrossRef]

M. L. Dennis and I. N. Duling, "Exerimental Study of Sideband Generation in Femtosecond Fiber Lasers," IEEE J. Quantum Electron. 30, 1469-1477 (1994).
[CrossRef]

Opt. Lett. (1)

Other (3)

G. Sluyterman and U . Röpke, "Comparison of Numerical Simulation of a Polarization-Maintaining Figure-Eight Laser with Experiment," in Conference on Lasers and Electro-Optics, p. CWA6 (OSA, 1999).</conf>

I. Hartl, G. Imeshev, L. Dong, G. C. Cho, and M. E. Fermann, "Ultra-Compact Dispersion Compensated Femtosecond Fiber Oscillators and Amplifiers," in Conference on Lasers and Electro-Optics, p. CThG1 (OSA, 2005).

D. Taverner, D. J. Richardson, and D. N. Payne, "Polarisation Maintaining Figure-8 Laser," in Nonlinear Guided Wave Phenomenon, pp. WC-3 (Cambridge, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of the polarization maintaining figure-eight erbium laser.

Fig. 2.
Fig. 2.

(a) Lasing spectrum when the RF modulator is off (red line) and when the amplitude modulator is driven by a pure sine wave at the cavity repetition frequency (blue line). (b) Close up of one peak in the spectrum from (a), plotted on a linear scale

Fig. 3.
Fig. 3.

Spectrum of the laser when passively modelocked. (a) Spectrum when 1.5 m of Er-doped fiber was used, for two different amounts of PM-SMF in the cavity. (b) Spectrum for f rep =19.6 MHz from (a), plotted on a linear scale.

Fig. 4.
Fig. 4.

(a) Passively modelocked pulse train measured with a fast photodiode and oscilloscope. (b) Measured auto-correlation of the passively modelocked pulse train. The FWHM of the correlation was 659 fs, corresponding to a FWHM of 427 fs for a sech2 pulse.

Fig. 5.
Fig. 5.

Broadest measured modelocked spectra for different lengths of erbium-doped fiber in the cavity

Fig. 6.
Fig. 6.

Measurement of the temporal evolution of the laser output when the RF drive power to the amplitude modulator was switched off. (a) Instance when laser reverted to CW oscillation. (b) Instance when the laser transitioned to passive modelocking.

Fig. 7.
Fig. 7.

Spectrum of the laser at the highest pump power immediately after transitioning to passive modelocking, showing multiple pulses in the cavity, compared to the spectrum after the pump power has been turned down so that only a single pulse was in the cavity. Spectra have been offset vertically for clarity.

Fig. 8.
Fig. 8.

Q-switched, modelocked pulse trains observed when the RF power was amplitude modulated. (a) Modulation frequency = 38 kHz. (b) Modulation frequency = 49 kHz.

Fig. 9.
Fig. 9.

Optical spectrum observed when the RF drive power was amplitude modulated at 38 kHz compared to 49 kHz. The spectra have been offset vertically for clarity.

Metrics