Abstract

We report for the first time acousto-optical transmission resonances in a non-silica fiber. The resonances, generated in highly nonlinear, single-mode Chalcogenide (As2Se3) fiber, are up to -9 dB deep and tunable over 235 nm around 1450 nm by varying the frequency of an acoustic wave propagating in the fiber, creating a variable period long period grating. The material properties of Chalcogenide modify the acoustic wave propagation leading to a different frequency range of operation when compared to Silica fiber. A tunable resonant structure in this medium opens up possibilities for all-optical processing and mid-IR applications.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.T. Schaafsma, L.B. Shaw, L.E. Busse, R.A. Mossadegh, P. Pureza, J.S. Sanghera, and I.D. Aggarwal, "Chalcogenide optical fiber couplers for chemical sensing, telecommunications, and infrared lasers," Proceedings of the Conference on Lasers and Electro-Optics, San Francisco, CTh051 (1998)
  2. J.A. Moon and D.T. Schaafsma, "Chalcogenide Fibers: An Overview of Selected Applications", Fiber and Integrated Optics, 19, pp. 201- 210, (2000)
    [CrossRef]
  3. R.E. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L.B. Shaw, and I.D. Aggarwal, "Large Raman gain and nonlinear phase shifts in high-purity As2Se3 Chalcogenide fibers," J. Opt. Soc. Am. B 21, 1146-1155 (2004)
    [CrossRef]
  4. S.D. Jackson and G. Anzueto-Sánchez;, "Chalcogenide glass Raman fiber laser," Appl. Phys. Lett., 88, 221106 (2006)
    [CrossRef]
  5. L.B. Fu, A. Fuerbach, I.C.M. Littler, and B.J. Eggleton, "Efficient optical pulse compression using Chalcogenide single-mode fibers," Appl. Phys. Lett. 88, 081116 (2006)
    [CrossRef]
  6. <jrn>. L.B. Fu, M. Rochette, V. Ta'eed, D. Moss, and B.J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 Chalcogenide glass fiber," Opt. Express 13, 7637- (2005)</jrn>
    [CrossRef] [PubMed]
  7. V.G. Ta’eed, L.B. Fu, M. Rochette, I.C.M. Littler, D.J. Moss, B.J. Eggleton, "XPM wavelength conversion in highly nonlinear singlemode As2Se3 Fiber," Proceedings of the Conference on Lasers and Electro-Optics, Long Beach, CMW4 (2006)
  8. K.S. Abedin, K.Y. Song, L. Thevenaz, M.G. Herraez, K. Hotate, "Highly efficient slow and fast light generation via Brillouin scattering in As2Se3 Chalcogenide fiber," Conference on Lasers and Electro-Optics, Long Beach, Postdeadline CPDA9 (2006)
  9. J.N. Blake, B.Y. Kim, H.J. Shaw, "Fiberoptic modal coupler using periodic microbending," Opt. Lett. 11, 177-179 (1986)
    [CrossRef] [PubMed]
  10. D. Pudo, E.C. Mägi, and B.J. Eggleton, "Long-period gratings in Chalcogenide fibers," Opt. Express 14, 3763-3766 (2006)
    [CrossRef] [PubMed]
  11. M. Asobe, T. Ohara, 1. Yokohama and T. Kaino, "Fabrication of Bragg grating in Chalcogenide glass fibre using the transverse holographic method," Electron. Lett. 32, pp. 1611-1613 (1996)
    [CrossRef]
  12. B.Y. Kim and J.N. Blake, H.E. Engan, H.J. Shaw, "All-fiber acousto-optic frequency shifter," Opt. Lett. 11, 389-391 (1986)
    [CrossRef] [PubMed]
  13. J.N. Blake and B.Y. Kim, H.E. Engan, H.J. Shaw, "Analysis of intermodal coupling in a two-mode fiber with periodic microbends," Opt. Lett. 12, 281-283 (1987)
    [CrossRef] [PubMed]
  14. H.E. Engan, B.Y. Kim, J.N. Blake, H.J Shaw, "Propagation and optical interaction of guided acoustic waves in two-mode optical fibers," J. Lightwave Technol. 6, 428-436 (1988)
    [CrossRef]
  15. S.S. Lee, H.S. Kim, I.K. Hwang and S.H. Yun, "Highly-efficient broadband acoustic transducer for all-fiber acousto-optic devices," Electron. Lett. 39, 1309- 1310 (2003)
    [CrossRef]
  16. H.E. Engan, "Acousto-optic coupling in optical Fibers," IEEE Ultrasonics Symposium 1, 625- 629 (2000)
  17. A. Diez, T.A. Birks, W.H. Reeves, B.J. Mangan, and P.St. J. Russell, "Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves," Optics Lett. 25, 1499-1501 (2000)
    [CrossRef]
  18. H.F. Taylor, "Bending effects in optical fibers," J. Lightwave Technol. 2, 617-628 (1984)
    [CrossRef]
  19. P.Z. Dashti, Q. Li, C.-H. Lin, and H.P. Lee, "Coherent acousto-optic mode coupling in dispersion compensating fiber by two acoustic gratings with orthogonal vibration directions," Optics Lett. 28, 1403-1405 (2003)
    [CrossRef]
  20. T.N. Claytor and R.J. Sladek, "Ultrasonic velocities in amorphous As2S3 and As2Se3 between 1.5 and 296K," Phys. Rev. B 18, 5842-5850 (1978)
    [CrossRef]
  21. D.J. McEnroe and W.C. Lacourse, "Tensile strengths of Se, As2S3, As2Se3, and Ge30 As15 Se55 glass fibers," Communications of the American Ceramic Society 72, 1491-1494 (1989)
    [CrossRef]
  22. Kaye and Laby Online, "Table of Physical and Chemical Constants, Section 2.4: Acoustics," www.kayelaby.npl.co.uk/

2006 (3)

S.D. Jackson and G. Anzueto-Sánchez;, "Chalcogenide glass Raman fiber laser," Appl. Phys. Lett., 88, 221106 (2006)
[CrossRef]

L.B. Fu, A. Fuerbach, I.C.M. Littler, and B.J. Eggleton, "Efficient optical pulse compression using Chalcogenide single-mode fibers," Appl. Phys. Lett. 88, 081116 (2006)
[CrossRef]

D. Pudo, E.C. Mägi, and B.J. Eggleton, "Long-period gratings in Chalcogenide fibers," Opt. Express 14, 3763-3766 (2006)
[CrossRef] [PubMed]

2004 (1)

2003 (2)

S.S. Lee, H.S. Kim, I.K. Hwang and S.H. Yun, "Highly-efficient broadband acoustic transducer for all-fiber acousto-optic devices," Electron. Lett. 39, 1309- 1310 (2003)
[CrossRef]

P.Z. Dashti, Q. Li, C.-H. Lin, and H.P. Lee, "Coherent acousto-optic mode coupling in dispersion compensating fiber by two acoustic gratings with orthogonal vibration directions," Optics Lett. 28, 1403-1405 (2003)
[CrossRef]

2000 (2)

A. Diez, T.A. Birks, W.H. Reeves, B.J. Mangan, and P.St. J. Russell, "Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves," Optics Lett. 25, 1499-1501 (2000)
[CrossRef]

J.A. Moon and D.T. Schaafsma, "Chalcogenide Fibers: An Overview of Selected Applications", Fiber and Integrated Optics, 19, pp. 201- 210, (2000)
[CrossRef]

1996 (1)

M. Asobe, T. Ohara, 1. Yokohama and T. Kaino, "Fabrication of Bragg grating in Chalcogenide glass fibre using the transverse holographic method," Electron. Lett. 32, pp. 1611-1613 (1996)
[CrossRef]

1989 (1)

D.J. McEnroe and W.C. Lacourse, "Tensile strengths of Se, As2S3, As2Se3, and Ge30 As15 Se55 glass fibers," Communications of the American Ceramic Society 72, 1491-1494 (1989)
[CrossRef]

1988 (1)

H.E. Engan, B.Y. Kim, J.N. Blake, H.J Shaw, "Propagation and optical interaction of guided acoustic waves in two-mode optical fibers," J. Lightwave Technol. 6, 428-436 (1988)
[CrossRef]

1987 (1)

1986 (2)

1984 (1)

H.F. Taylor, "Bending effects in optical fibers," J. Lightwave Technol. 2, 617-628 (1984)
[CrossRef]

1978 (1)

T.N. Claytor and R.J. Sladek, "Ultrasonic velocities in amorphous As2S3 and As2Se3 between 1.5 and 296K," Phys. Rev. B 18, 5842-5850 (1978)
[CrossRef]

Aggarwal, I.D.

Anzueto-Sánchez, G.

S.D. Jackson and G. Anzueto-Sánchez;, "Chalcogenide glass Raman fiber laser," Appl. Phys. Lett., 88, 221106 (2006)
[CrossRef]

Asobe, M.

M. Asobe, T. Ohara, 1. Yokohama and T. Kaino, "Fabrication of Bragg grating in Chalcogenide glass fibre using the transverse holographic method," Electron. Lett. 32, pp. 1611-1613 (1996)
[CrossRef]

Birks, T.A.

A. Diez, T.A. Birks, W.H. Reeves, B.J. Mangan, and P.St. J. Russell, "Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves," Optics Lett. 25, 1499-1501 (2000)
[CrossRef]

Blake, J.N.

Claytor, T.N.

T.N. Claytor and R.J. Sladek, "Ultrasonic velocities in amorphous As2S3 and As2Se3 between 1.5 and 296K," Phys. Rev. B 18, 5842-5850 (1978)
[CrossRef]

Dashti, P.Z.

P.Z. Dashti, Q. Li, C.-H. Lin, and H.P. Lee, "Coherent acousto-optic mode coupling in dispersion compensating fiber by two acoustic gratings with orthogonal vibration directions," Optics Lett. 28, 1403-1405 (2003)
[CrossRef]

Diez, A.

A. Diez, T.A. Birks, W.H. Reeves, B.J. Mangan, and P.St. J. Russell, "Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves," Optics Lett. 25, 1499-1501 (2000)
[CrossRef]

Eggleton, B.J.

L.B. Fu, A. Fuerbach, I.C.M. Littler, and B.J. Eggleton, "Efficient optical pulse compression using Chalcogenide single-mode fibers," Appl. Phys. Lett. 88, 081116 (2006)
[CrossRef]

D. Pudo, E.C. Mägi, and B.J. Eggleton, "Long-period gratings in Chalcogenide fibers," Opt. Express 14, 3763-3766 (2006)
[CrossRef] [PubMed]

Engan, H.E.

Fu, L.B.

L.B. Fu, A. Fuerbach, I.C.M. Littler, and B.J. Eggleton, "Efficient optical pulse compression using Chalcogenide single-mode fibers," Appl. Phys. Lett. 88, 081116 (2006)
[CrossRef]

Fuerbach, A.

L.B. Fu, A. Fuerbach, I.C.M. Littler, and B.J. Eggleton, "Efficient optical pulse compression using Chalcogenide single-mode fibers," Appl. Phys. Lett. 88, 081116 (2006)
[CrossRef]

Hodelin, J.

Hwang, I.K.

S.S. Lee, H.S. Kim, I.K. Hwang and S.H. Yun, "Highly-efficient broadband acoustic transducer for all-fiber acousto-optic devices," Electron. Lett. 39, 1309- 1310 (2003)
[CrossRef]

Jackson, S.D.

S.D. Jackson and G. Anzueto-Sánchez;, "Chalcogenide glass Raman fiber laser," Appl. Phys. Lett., 88, 221106 (2006)
[CrossRef]

Kim, B.Y.

Kim, H.S.

S.S. Lee, H.S. Kim, I.K. Hwang and S.H. Yun, "Highly-efficient broadband acoustic transducer for all-fiber acousto-optic devices," Electron. Lett. 39, 1309- 1310 (2003)
[CrossRef]

Lacourse, W.C.

D.J. McEnroe and W.C. Lacourse, "Tensile strengths of Se, As2S3, As2Se3, and Ge30 As15 Se55 glass fibers," Communications of the American Ceramic Society 72, 1491-1494 (1989)
[CrossRef]

Lee, H.P.

P.Z. Dashti, Q. Li, C.-H. Lin, and H.P. Lee, "Coherent acousto-optic mode coupling in dispersion compensating fiber by two acoustic gratings with orthogonal vibration directions," Optics Lett. 28, 1403-1405 (2003)
[CrossRef]

Lee, S.S.

S.S. Lee, H.S. Kim, I.K. Hwang and S.H. Yun, "Highly-efficient broadband acoustic transducer for all-fiber acousto-optic devices," Electron. Lett. 39, 1309- 1310 (2003)
[CrossRef]

Lenz, G.

Li, Q.

P.Z. Dashti, Q. Li, C.-H. Lin, and H.P. Lee, "Coherent acousto-optic mode coupling in dispersion compensating fiber by two acoustic gratings with orthogonal vibration directions," Optics Lett. 28, 1403-1405 (2003)
[CrossRef]

Lin, C.-H.

P.Z. Dashti, Q. Li, C.-H. Lin, and H.P. Lee, "Coherent acousto-optic mode coupling in dispersion compensating fiber by two acoustic gratings with orthogonal vibration directions," Optics Lett. 28, 1403-1405 (2003)
[CrossRef]

Littler, I.C.M.

L.B. Fu, A. Fuerbach, I.C.M. Littler, and B.J. Eggleton, "Efficient optical pulse compression using Chalcogenide single-mode fibers," Appl. Phys. Lett. 88, 081116 (2006)
[CrossRef]

Mägi, E.C.

Mangan, B.J.

A. Diez, T.A. Birks, W.H. Reeves, B.J. Mangan, and P.St. J. Russell, "Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves," Optics Lett. 25, 1499-1501 (2000)
[CrossRef]

McEnroe, D.J.

D.J. McEnroe and W.C. Lacourse, "Tensile strengths of Se, As2S3, As2Se3, and Ge30 As15 Se55 glass fibers," Communications of the American Ceramic Society 72, 1491-1494 (1989)
[CrossRef]

Moon, J.A.

J.A. Moon and D.T. Schaafsma, "Chalcogenide Fibers: An Overview of Selected Applications", Fiber and Integrated Optics, 19, pp. 201- 210, (2000)
[CrossRef]

Ohara, T.

M. Asobe, T. Ohara, 1. Yokohama and T. Kaino, "Fabrication of Bragg grating in Chalcogenide glass fibre using the transverse holographic method," Electron. Lett. 32, pp. 1611-1613 (1996)
[CrossRef]

Pudo, D.

Reeves, W.H.

A. Diez, T.A. Birks, W.H. Reeves, B.J. Mangan, and P.St. J. Russell, "Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves," Optics Lett. 25, 1499-1501 (2000)
[CrossRef]

Russell, P.St. J.

A. Diez, T.A. Birks, W.H. Reeves, B.J. Mangan, and P.St. J. Russell, "Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves," Optics Lett. 25, 1499-1501 (2000)
[CrossRef]

Sanghera, J.

Schaafsma, D.T.

J.A. Moon and D.T. Schaafsma, "Chalcogenide Fibers: An Overview of Selected Applications", Fiber and Integrated Optics, 19, pp. 201- 210, (2000)
[CrossRef]

Shaw, H.J

H.E. Engan, B.Y. Kim, J.N. Blake, H.J Shaw, "Propagation and optical interaction of guided acoustic waves in two-mode optical fibers," J. Lightwave Technol. 6, 428-436 (1988)
[CrossRef]

Shaw, H.J.

Shaw, L.B.

Sladek, R.J.

T.N. Claytor and R.J. Sladek, "Ultrasonic velocities in amorphous As2S3 and As2Se3 between 1.5 and 296K," Phys. Rev. B 18, 5842-5850 (1978)
[CrossRef]

Slusher, R.E.

Taylor, H.F.

H.F. Taylor, "Bending effects in optical fibers," J. Lightwave Technol. 2, 617-628 (1984)
[CrossRef]

Yun, S.H.

S.S. Lee, H.S. Kim, I.K. Hwang and S.H. Yun, "Highly-efficient broadband acoustic transducer for all-fiber acousto-optic devices," Electron. Lett. 39, 1309- 1310 (2003)
[CrossRef]

Appl. Phys. Lett. (2)

S.D. Jackson and G. Anzueto-Sánchez;, "Chalcogenide glass Raman fiber laser," Appl. Phys. Lett., 88, 221106 (2006)
[CrossRef]

L.B. Fu, A. Fuerbach, I.C.M. Littler, and B.J. Eggleton, "Efficient optical pulse compression using Chalcogenide single-mode fibers," Appl. Phys. Lett. 88, 081116 (2006)
[CrossRef]

Communications of the American Ceramic Society (1)

D.J. McEnroe and W.C. Lacourse, "Tensile strengths of Se, As2S3, As2Se3, and Ge30 As15 Se55 glass fibers," Communications of the American Ceramic Society 72, 1491-1494 (1989)
[CrossRef]

Electron. Lett. (2)

M. Asobe, T. Ohara, 1. Yokohama and T. Kaino, "Fabrication of Bragg grating in Chalcogenide glass fibre using the transverse holographic method," Electron. Lett. 32, pp. 1611-1613 (1996)
[CrossRef]

S.S. Lee, H.S. Kim, I.K. Hwang and S.H. Yun, "Highly-efficient broadband acoustic transducer for all-fiber acousto-optic devices," Electron. Lett. 39, 1309- 1310 (2003)
[CrossRef]

Fiber and Integrated Optics (1)

J.A. Moon and D.T. Schaafsma, "Chalcogenide Fibers: An Overview of Selected Applications", Fiber and Integrated Optics, 19, pp. 201- 210, (2000)
[CrossRef]

J. Lightwave Technol. (2)

H.F. Taylor, "Bending effects in optical fibers," J. Lightwave Technol. 2, 617-628 (1984)
[CrossRef]

H.E. Engan, B.Y. Kim, J.N. Blake, H.J Shaw, "Propagation and optical interaction of guided acoustic waves in two-mode optical fibers," J. Lightwave Technol. 6, 428-436 (1988)
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (3)

Optics Lett. (2)

P.Z. Dashti, Q. Li, C.-H. Lin, and H.P. Lee, "Coherent acousto-optic mode coupling in dispersion compensating fiber by two acoustic gratings with orthogonal vibration directions," Optics Lett. 28, 1403-1405 (2003)
[CrossRef]

A. Diez, T.A. Birks, W.H. Reeves, B.J. Mangan, and P.St. J. Russell, "Excitation of cladding modes in photonic crystal fibers by flexural acoustic waves," Optics Lett. 25, 1499-1501 (2000)
[CrossRef]

Phys. Rev. B (1)

T.N. Claytor and R.J. Sladek, "Ultrasonic velocities in amorphous As2S3 and As2Se3 between 1.5 and 296K," Phys. Rev. B 18, 5842-5850 (1978)
[CrossRef]

Other (6)

H.E. Engan, "Acousto-optic coupling in optical Fibers," IEEE Ultrasonics Symposium 1, 625- 629 (2000)

D.T. Schaafsma, L.B. Shaw, L.E. Busse, R.A. Mossadegh, P. Pureza, J.S. Sanghera, and I.D. Aggarwal, "Chalcogenide optical fiber couplers for chemical sensing, telecommunications, and infrared lasers," Proceedings of the Conference on Lasers and Electro-Optics, San Francisco, CTh051 (1998)

<jrn>. L.B. Fu, M. Rochette, V. Ta'eed, D. Moss, and B.J. Eggleton, "Investigation of self-phase modulation based optical regeneration in single mode As2Se3 Chalcogenide glass fiber," Opt. Express 13, 7637- (2005)</jrn>
[CrossRef] [PubMed]

V.G. Ta’eed, L.B. Fu, M. Rochette, I.C.M. Littler, D.J. Moss, B.J. Eggleton, "XPM wavelength conversion in highly nonlinear singlemode As2Se3 Fiber," Proceedings of the Conference on Lasers and Electro-Optics, Long Beach, CMW4 (2006)

K.S. Abedin, K.Y. Song, L. Thevenaz, M.G. Herraez, K. Hotate, "Highly efficient slow and fast light generation via Brillouin scattering in As2Se3 Chalcogenide fiber," Conference on Lasers and Electro-Optics, Long Beach, Postdeadline CPDA9 (2006)

Kaye and Laby Online, "Table of Physical and Chemical Constants, Section 2.4: Acoustics," www.kayelaby.npl.co.uk/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(i) Periodically stressed fiber, with microbends of period matching the intermodal beat length, to couple light from the core mode LP01 into the first cladding mode LP11. (ii) Vectorial representation of the phase matching condition showing the propagation vectors for each mode and the requirements for the long period grating to allow coupling.

Fig. 2.
Fig. 2.

Experimental set-up. An amplified signal generator excites a PZT at around 1 MHz and up to 130 Vp-p. An Aluminum cone matches the longitudinal mechanical vibration of the 5 mm dia. PZT into the optical fiber. The fiber is vibrated transversely leading to a flexural acoustic wave propagating out in both directions along the fiber. A broadband e-led source is coupled into the core mode of the fiber and the transmitted light is monitored on an OSA.

Fig. 3.
Fig. 3.

Acousto-optic resonance at 1528 nm excited by an acoustic flexural wave with frequency 870 kHz. By changing the voltage applied to the PZT, the depth of the resonance may be varied from -0.6 dB through to -9.2 dB.

Fig. 4.
Fig. 4.

Acousto-optic resonances for different acoustic frequencies generated from a single PZT transducer. The resonance may be tuned over 235 nm by changing the frequency over 700 kHz.

Fig. 5.
Fig. 5.

Tuning Curve for the Chalcogenide fiber As2Se3 showing the optical wavelength of the acousto-optic resonance for a given acoustic frequency. The tuning range is 235 nm using a single transducer. The curve is fitted well by a 2nd order polynomial.

Tables (1)

Tables Icon

Table 1. Some material properties of Silica versus Chalcogenide As2Se3 T=300K

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ LPG = Λ ( n core n clad ( l , m ) ) ;
C E = M Y ρ

Metrics