Abstract

Micro-fabrication of periodic structures was performed by holographic lithography technique in SU-8 photoresist using a simple and versatile experimental arrangement based on a diffractive beam-splitter. High-fidelity two- and three-dimensional microstructures fabricated with sub-micrometric resolution in large areas of approximately 1 mm diameter. The structures are potentially usable as elements of micro-fluidic systems (e.g., Brownian ratchets), and templates for photonic crystal devices (e.g., mirrors, collimators, superprisms).

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60 - 64 (1997).
    [CrossRef]
  2. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographiclithography," Nature 404, 53 - 56 (2000).
    [CrossRef] [PubMed]
  3. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "A novel femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79(6), 725-727 (2001).
    [CrossRef]
  4. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional recording by femtosecond pulses in polymer materials," J. Photopolym. Sci. Techol. 16, 427-432 (2003).
    [CrossRef]
  5. S. Juodkazis, T. Kondo, V. Mizeikis, S. Matsuo, and H. M. andH. Misawa, "Three-dimensional recording by femtosecond pulses in dielectrics," in Photonics West, Photon Processing in Microelectronics and Photonics II (27-30Jan. 2003, San Jose, U. S. A.) SPIE Proc. 4977, A. Piqué, K. Sugioka, P. R. Herman, J. Fieret, F. G. B. J. J. Dubikovsky, W. Hoving, K. Washio, D. B. G. and F. Träger, and K. Murakami, eds., 94-107 (2003).
    [CrossRef]
  6. A. Chelnokov, S. Rowson, J.-M. Lourtioz, V. Berger, and J.-Y. Courtois, "An optical drill for the fabrication of photonic crystals," J. Opt. A. Purer Appl. Opt. 1, L3-L6 (1999).
    [CrossRef]
  7. J. H. Moon, S. M. Yang, D. Pine, and W. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85, 4184-4186 (2004).
    [CrossRef]
  8. H. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, "Effects of polarization on laser holography for microstructure fabrication," Phys. Rev. E 67, 056,619 (2003).
    [CrossRef]
  9. S. Matthias and F. Müller, "Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets," Nature 424, 53-57 (2003).
    [CrossRef] [PubMed]
  10. N. Tétreault, G. von Freymann, M. Deubel, M. H. F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Materials 18, 457-460 (2005).
    [CrossRef]
  11. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10,096 - 10,099 (1998).
    [CrossRef]
  12. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett 74, 1370 - 1372 (1999).
    [CrossRef]
  13. T. Prasad, V. Colvin, and D. Mittleman, "Superprism phenomenon in three-dimensional macroporous polymer photonic crystals," Phys. Rev. A 67, 165,103-1/7 (2003).
  14. C. Luo, M. Soljacic, and J. Joannopoulos, "Superprism effect based on phase velocities," Opt. Lett. 29, 745-747 (2004).
    [CrossRef] [PubMed]
  15. L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002).
    [CrossRef]
  16. A. Maznev, T. Crimmins, and K. Nelson, "How to make femtosecond pulses overlap," Opt. Lett. 23, 1378 -1380 (1998).
    [CrossRef]
  17. T. Kondo, S. Juodkazis, and H. Misawa, "Reduction of capillary force for high aspect-ratio nanofabrication," Appl. Phys. A 81, 1583-1586 (2005).
    [CrossRef]
  18. S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
    [CrossRef]
  19. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interferenceof femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003).
    [CrossRef]
  20. S. Matsuo, T. Kondo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Fabrication of three-dimensional photonic crystals by femtosecond laserinterference," in Photonic Bandgap Materials and Devices, A. Adibi, A. Scherer, and S.-Y. Lin, eds., Proc. SPIE 4655, 327-334 (2002).
    [CrossRef]
  21. S. Juodkazis, T. Kondo, V. Mizeikis, S. Matsuo, H. Misawa, E. Vanagas, and I. Kudryashov, "Microfabrication of three-dimensional structures in polymer and glass by femtosecond pulses," in ROC-Lithuania Bilateral Conf. Optoelectronics & Magnetic Materials (May25-26 2002, Taipei, Taiwan) Proc., 27-29 ((preprint:http://arXiv.org/abs/physics/0205025), 2002).
  22. S. Juodkazis, T. Kondo, S. Dubikovski, V. Mizeikis, S. Matsuo, and H. Misawa, "Three-dimensional holographic recording in photo-thermo-refractive glass by femtosecond pulses," in Int. Conf. Advanced Laser Technologies, ALT-2002 (Sept. 15-20 2002, Adelboden,Switzerland) SPIE Proc. 5147, H. P. Weber, V. I. Konov, and T. Graf, eds., 226 - 235 (2003).
    [CrossRef]
  23. J. N. Israelachvili, Intermolecular and surface forces, 2nd ed. (Academic Press Ltd., London, 1992).
  24. T. Tanaka, M. Morigami, and N. Atoda, "Mechanism of resist pattern collapse during development process," Jpn. J. Appl. Phys. 32, 6059-6064 (1993).
    [CrossRef]
  25. T. Kondo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional high-aspect-ratio recording in resist," J. Non-Cryst. Solids (2005) in press.
  26. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
    [CrossRef] [PubMed]
  27. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
    [CrossRef]

2005 (3)

N. Tétreault, G. von Freymann, M. Deubel, M. H. F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Materials 18, 457-460 (2005).
[CrossRef]

T. Kondo, S. Juodkazis, and H. Misawa, "Reduction of capillary force for high aspect-ratio nanofabrication," Appl. Phys. A 81, 1583-1586 (2005).
[CrossRef]

T. Kondo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional high-aspect-ratio recording in resist," J. Non-Cryst. Solids (2005) in press.

2004 (2)

C. Luo, M. Soljacic, and J. Joannopoulos, "Superprism effect based on phase velocities," Opt. Lett. 29, 745-747 (2004).
[CrossRef] [PubMed]

J. H. Moon, S. M. Yang, D. Pine, and W. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85, 4184-4186 (2004).
[CrossRef]

2003 (5)

H. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, "Effects of polarization on laser holography for microstructure fabrication," Phys. Rev. E 67, 056,619 (2003).
[CrossRef]

S. Matthias and F. Müller, "Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets," Nature 424, 53-57 (2003).
[CrossRef] [PubMed]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional recording by femtosecond pulses in polymer materials," J. Photopolym. Sci. Techol. 16, 427-432 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interferenceof femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

2002 (2)

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
[CrossRef]

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002).
[CrossRef]

2001 (1)

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "A novel femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79(6), 725-727 (2001).
[CrossRef]

2000 (2)

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographiclithography," Nature 404, 53 - 56 (2000).
[CrossRef] [PubMed]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

1999 (2)

A. Chelnokov, S. Rowson, J.-M. Lourtioz, V. Berger, and J.-Y. Courtois, "An optical drill for the fabrication of photonic crystals," J. Opt. A. Purer Appl. Opt. 1, L3-L6 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett 74, 1370 - 1372 (1999).
[CrossRef]

1998 (2)

A. Maznev, T. Crimmins, and K. Nelson, "How to make femtosecond pulses overlap," Opt. Lett. 23, 1378 -1380 (1998).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10,096 - 10,099 (1998).
[CrossRef]

1997 (1)

V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60 - 64 (1997).
[CrossRef]

1993 (1)

T. Tanaka, M. Morigami, and N. Atoda, "Mechanism of resist pattern collapse during development process," Jpn. J. Appl. Phys. 32, 6059-6064 (1993).
[CrossRef]

Aizenberg, J.

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
[CrossRef]

Atoda, N.

T. Tanaka, M. Morigami, and N. Atoda, "Mechanism of resist pattern collapse during development process," Jpn. J. Appl. Phys. 32, 6059-6064 (1993).
[CrossRef]

Berger, V.

A. Chelnokov, S. Rowson, J.-M. Lourtioz, V. Berger, and J.-Y. Courtois, "An optical drill for the fabrication of photonic crystals," J. Opt. A. Purer Appl. Opt. 1, L3-L6 (1999).
[CrossRef]

V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60 - 64 (1997).
[CrossRef]

Blanco, A.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Busch, K.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Campbell, M.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographiclithography," Nature 404, 53 - 56 (2000).
[CrossRef] [PubMed]

Chaikin, P. M.

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
[CrossRef]

Chang, W.

J. H. Moon, S. M. Yang, D. Pine, and W. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85, 4184-4186 (2004).
[CrossRef]

Chelnokov, A.

A. Chelnokov, S. Rowson, J.-M. Lourtioz, V. Berger, and J.-Y. Courtois, "An optical drill for the fabrication of photonic crystals," J. Opt. A. Purer Appl. Opt. 1, L3-L6 (1999).
[CrossRef]

Chomski, E.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Costard, E.

V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60 - 64 (1997).
[CrossRef]

Courtois, J.-Y.

A. Chelnokov, S. Rowson, J.-M. Lourtioz, V. Berger, and J.-Y. Courtois, "An optical drill for the fabrication of photonic crystals," J. Opt. A. Purer Appl. Opt. 1, L3-L6 (1999).
[CrossRef]

Crimmins, T.

Denning, R. G.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographiclithography," Nature 404, 53 - 56 (2000).
[CrossRef] [PubMed]

Deubel, M.

N. Tétreault, G. von Freymann, M. Deubel, M. H. F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Materials 18, 457-460 (2005).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Enkrich, C.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Gauthier-Lafaye, O.

V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60 - 64 (1997).
[CrossRef]

Grabtchak, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Harrison, M. T.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographiclithography," Nature 404, 53 - 56 (2000).
[CrossRef] [PubMed]

Ibisate, M.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Joannopoulos, J.

John, S.

N. Tétreault, G. von Freymann, M. Deubel, M. H. F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Materials 18, 457-460 (2005).
[CrossRef]

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Juodkazis, S.

T. Kondo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional high-aspect-ratio recording in resist," J. Non-Cryst. Solids (2005) in press.

T. Kondo, S. Juodkazis, and H. Misawa, "Reduction of capillary force for high aspect-ratio nanofabrication," Appl. Phys. A 81, 1583-1586 (2005).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional recording by femtosecond pulses in polymer materials," J. Photopolym. Sci. Techol. 16, 427-432 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interferenceof femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "A novel femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79(6), 725-727 (2001).
[CrossRef]

Karle, T.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett 74, 1370 - 1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10,096 - 10,099 (1998).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett 74, 1370 - 1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10,096 - 10,099 (1998).
[CrossRef]

Koch, W.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Kondo, T.

T. Kondo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional high-aspect-ratio recording in resist," J. Non-Cryst. Solids (2005) in press.

T. Kondo, S. Juodkazis, and H. Misawa, "Reduction of capillary force for high aspect-ratio nanofabrication," Appl. Phys. A 81, 1583-1586 (2005).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interferenceof femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional recording by femtosecond pulses in polymer materials," J. Photopolym. Sci. Techol. 16, 427-432 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "A novel femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79(6), 725-727 (2001).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett 74, 1370 - 1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10,096 - 10,099 (1998).
[CrossRef]

Krauss, T. F.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002).
[CrossRef]

Leonard, S.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Lopez, C.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Lourtioz, J.-M.

A. Chelnokov, S. Rowson, J.-M. Lourtioz, V. Berger, and J.-Y. Courtois, "An optical drill for the fabrication of photonic crystals," J. Opt. A. Purer Appl. Opt. 1, L3-L6 (1999).
[CrossRef]

Luo, C.

Matsuo, S.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional recording by femtosecond pulses in polymer materials," J. Photopolym. Sci. Techol. 16, 427-432 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interferenceof femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "A novel femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79(6), 725-727 (2001).
[CrossRef]

Matthias, S.

S. Matthias and F. Müller, "Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets," Nature 424, 53-57 (2003).
[CrossRef] [PubMed]

Mazilu, M.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002).
[CrossRef]

Maznev, A.

Megens, M.

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
[CrossRef]

Meisel, D. C.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Meseguer, F.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Miguez, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Miklyaev, Y. V.

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Misawa, H.

T. Kondo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional high-aspect-ratio recording in resist," J. Non-Cryst. Solids (2005) in press.

T. Kondo, S. Juodkazis, and H. Misawa, "Reduction of capillary force for high aspect-ratio nanofabrication," Appl. Phys. A 81, 1583-1586 (2005).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional recording by femtosecond pulses in polymer materials," J. Photopolym. Sci. Techol. 16, 427-432 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interferenceof femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "A novel femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79(6), 725-727 (2001).
[CrossRef]

Mizeikis, V.

T. Kondo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional high-aspect-ratio recording in resist," J. Non-Cryst. Solids (2005) in press.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interferenceof femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional recording by femtosecond pulses in polymer materials," J. Photopolym. Sci. Techol. 16, 427-432 (2003).
[CrossRef]

Mondia, J.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Moon, J. H.

J. H. Moon, S. M. Yang, D. Pine, and W. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85, 4184-4186 (2004).
[CrossRef]

Morigami, M.

T. Tanaka, M. Morigami, and N. Atoda, "Mechanism of resist pattern collapse during development process," Jpn. J. Appl. Phys. 32, 6059-6064 (1993).
[CrossRef]

Müller, F.

S. Matthias and F. Müller, "Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets," Nature 424, 53-57 (2003).
[CrossRef] [PubMed]

Nelson, K.

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett 74, 1370 - 1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10,096 - 10,099 (1998).
[CrossRef]

Ozin, G.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Ozin, G. A.

N. Tétreault, G. von Freymann, M. Deubel, M. H. F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Materials 18, 457-460 (2005).
[CrossRef]

Pérez-Willard, M. H. F.

N. Tétreault, G. von Freymann, M. Deubel, M. H. F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Materials 18, 457-460 (2005).
[CrossRef]

Pine, D.

J. H. Moon, S. M. Yang, D. Pine, and W. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85, 4184-4186 (2004).
[CrossRef]

Rowson, S.

A. Chelnokov, S. Rowson, J.-M. Lourtioz, V. Berger, and J.-Y. Courtois, "An optical drill for the fabrication of photonic crystals," J. Opt. A. Purer Appl. Opt. 1, L3-L6 (1999).
[CrossRef]

Russel, W. B.

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
[CrossRef]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett 74, 1370 - 1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10,096 - 10,099 (1998).
[CrossRef]

Sharp, D. N.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographiclithography," Nature 404, 53 - 56 (2000).
[CrossRef] [PubMed]

Soljacic, M.

Su, H.

H. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, "Effects of polarization on laser holography for microstructure fabrication," Phys. Rev. E 67, 056,619 (2003).
[CrossRef]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett 74, 1370 - 1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10,096 - 10,099 (1998).
[CrossRef]

Tanaka, T.

T. Tanaka, M. Morigami, and N. Atoda, "Mechanism of resist pattern collapse during development process," Jpn. J. Appl. Phys. 32, 6059-6064 (1993).
[CrossRef]

Tétreault, N.

N. Tétreault, G. von Freymann, M. Deubel, M. H. F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Materials 18, 457-460 (2005).
[CrossRef]

Toader, O.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett 74, 1370 - 1372 (1999).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10,096 - 10,099 (1998).
[CrossRef]

Turberfield, A.

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographiclithography," Nature 404, 53 - 56 (2000).
[CrossRef] [PubMed]

van Driel, H.

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

von Freymann, G.

N. Tétreault, G. von Freymann, M. Deubel, M. H. F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Materials 18, 457-460 (2005).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Wang, H. Z.

H. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, "Effects of polarization on laser holography for microstructure fabrication," Phys. Rev. E 67, 056,619 (2003).
[CrossRef]

Wang, X.

H. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, "Effects of polarization on laser holography for microstructure fabrication," Phys. Rev. E 67, 056,619 (2003).
[CrossRef]

Wegener, M.

N. Tétreault, G. von Freymann, M. Deubel, M. H. F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Materials 18, 457-460 (2005).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Wiltzius, P.

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
[CrossRef]

Wu, L.

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002).
[CrossRef]

Xu, J. F.

H. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, "Effects of polarization on laser holography for microstructure fabrication," Phys. Rev. E 67, 056,619 (2003).
[CrossRef]

Yang, S.

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
[CrossRef]

Yang, S. M.

J. H. Moon, S. M. Yang, D. Pine, and W. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85, 4184-4186 (2004).
[CrossRef]

Zheng, X. G.

H. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, "Effects of polarization on laser holography for microstructure fabrication," Phys. Rev. E 67, 056,619 (2003).
[CrossRef]

Zhong, Y. C.

H. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, "Effects of polarization on laser holography for microstructure fabrication," Phys. Rev. E 67, 056,619 (2003).
[CrossRef]

Adv. Materials (1)

N. Tétreault, G. von Freymann, M. Deubel, M. H. F. Pérez-Willard, S. John, M. Wegener, and G. A. Ozin, "New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates," Adv. Materials 18, 457-460 (2005).
[CrossRef]

Appl. Phys. A (1)

T. Kondo, S. Juodkazis, and H. Misawa, "Reduction of capillary force for high aspect-ratio nanofabrication," Appl. Phys. A 81, 1583-1586 (2005).
[CrossRef]

Appl. Phys. Lett (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett 74, 1370 - 1372 (1999).
[CrossRef]

Appl. Phys. Lett. (4)

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "A novel femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79(6), 725-727 (2001).
[CrossRef]

J. H. Moon, S. M. Yang, D. Pine, and W. Chang, "Multiple-exposure holographic lithography with phase shift," Appl. Phys. Lett. 85, 4184-4186 (2004).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interferenceof femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003).
[CrossRef]

Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, "Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations," Appl. Phys. Lett. 82, 1284-1286 (2003).
[CrossRef]

Chem. Mater. (1)

S. Yang, M. Megens, J. Aizenberg, P. Wiltzius, P. M. Chaikin, and W. B. Russel, "Creating periodic three-dimensional structures by multibeam interference of visible laser," Chem. Mater. 14, 2831-2833 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, 915-918 (2002).
[CrossRef]

J. Appl. Phys. (1)

V. Berger, O. Gauthier-Lafaye, and E. Costard, "Photonic band gaps and holography," J. Appl. Phys. 82, 60 - 64 (1997).
[CrossRef]

J. Non-Cryst. Solids (1)

T. Kondo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional high-aspect-ratio recording in resist," J. Non-Cryst. Solids (2005) in press.

J. Opt. A. Purer Appl. Opt. (1)

A. Chelnokov, S. Rowson, J.-M. Lourtioz, V. Berger, and J.-Y. Courtois, "An optical drill for the fabrication of photonic crystals," J. Opt. A. Purer Appl. Opt. 1, L3-L6 (1999).
[CrossRef]

J. Photopolym. Sci. Techol. (1)

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional recording by femtosecond pulses in polymer materials," J. Photopolym. Sci. Techol. 16, 427-432 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Tanaka, M. Morigami, and N. Atoda, "Mechanism of resist pattern collapse during development process," Jpn. J. Appl. Phys. 32, 6059-6064 (1993).
[CrossRef]

Nature (3)

A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. Mondia, G. Ozin, O. Toader, and H. van Driel, "Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres," Nature 405, 437-440 (2000).
[CrossRef] [PubMed]

M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. Turberfield, "Fabrication of photonic crystals for the visible spectrum by holographiclithography," Nature 404, 53 - 56 (2000).
[CrossRef] [PubMed]

S. Matthias and F. Müller, "Asymmetric pores in a silicon membrane acting as massively parallel brownian ratchets," Nature 424, 53-57 (2003).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, 10,096 - 10,099 (1998).
[CrossRef]

Phys. Rev. E (1)

H. Su, Y. C. Zhong, X. Wang, X. G. Zheng, J. F. Xu, and H. Z. Wang, "Effects of polarization on laser holography for microstructure fabrication," Phys. Rev. E 67, 056,619 (2003).
[CrossRef]

Other (6)

S. Juodkazis, T. Kondo, V. Mizeikis, S. Matsuo, and H. M. andH. Misawa, "Three-dimensional recording by femtosecond pulses in dielectrics," in Photonics West, Photon Processing in Microelectronics and Photonics II (27-30Jan. 2003, San Jose, U. S. A.) SPIE Proc. 4977, A. Piqué, K. Sugioka, P. R. Herman, J. Fieret, F. G. B. J. J. Dubikovsky, W. Hoving, K. Washio, D. B. G. and F. Träger, and K. Murakami, eds., 94-107 (2003).
[CrossRef]

T. Prasad, V. Colvin, and D. Mittleman, "Superprism phenomenon in three-dimensional macroporous polymer photonic crystals," Phys. Rev. A 67, 165,103-1/7 (2003).

S. Matsuo, T. Kondo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Fabrication of three-dimensional photonic crystals by femtosecond laserinterference," in Photonic Bandgap Materials and Devices, A. Adibi, A. Scherer, and S.-Y. Lin, eds., Proc. SPIE 4655, 327-334 (2002).
[CrossRef]

S. Juodkazis, T. Kondo, V. Mizeikis, S. Matsuo, H. Misawa, E. Vanagas, and I. Kudryashov, "Microfabrication of three-dimensional structures in polymer and glass by femtosecond pulses," in ROC-Lithuania Bilateral Conf. Optoelectronics & Magnetic Materials (May25-26 2002, Taipei, Taiwan) Proc., 27-29 ((preprint:http://arXiv.org/abs/physics/0205025), 2002).

S. Juodkazis, T. Kondo, S. Dubikovski, V. Mizeikis, S. Matsuo, and H. Misawa, "Three-dimensional holographic recording in photo-thermo-refractive glass by femtosecond pulses," in Int. Conf. Advanced Laser Technologies, ALT-2002 (Sept. 15-20 2002, Adelboden,Switzerland) SPIE Proc. 5147, H. P. Weber, V. I. Konov, and T. Graf, eds., 226 - 235 (2003).
[CrossRef]

J. N. Israelachvili, Intermolecular and surface forces, 2nd ed. (Academic Press Ltd., London, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Holographic 3D recording using diffractive beam-splitter (a), description of the set of beams used for recording, beams selected by the holes in the amplitude mask are labeled by numbers (b), two pulses with tilted wavefronts converge with negligible optical path difference and interfere in the entire region of their spatial overlap (c).

Fig. 2.
Fig. 2.

SEM images of two-dimensional square pattern of circular SU-8 pillars at different magnification.

Fig. 3.
Fig. 3.

Four-beam interference patterns for uniform-phase [00,20.40], [900,20.40], [1800,20.40], [2700,20.40] and phase-shifted [00,20.40,0], [900,20.40, π/2], [1800,20.40,0], [2700,20.40,π/2] configurations, (a,b) and (c,d), respectively. The images in (a) and (c) are intensity patterns visualized by a CCD camera, while images in (b) and (d) are SEM micro-graphs of samples recorded in SU-8 via two-photon absorption.

Fig. 4.
Fig. 4.

(a) calculated 3D intensity distribution resulting from the [00,340] , [900,340] , [1800,340] , [2700,280] beam arrangement, (b) calculated intensity distribution corresponding to the 2D plane coincident with the sample’s surface superimposed on the SEM image of the actual sample, (c) large-scale SEM image of the sample, illustrating its uniformity.

Fig. 5.
Fig. 5.

(a) SEM images of the sample shown in the previous figure, in the top image the white line shows the orientation of the cleaving plane, the bottom-left image shows the portion of the cleaved plane at the middle depth, far from top and bottom surfaces of the sample, the bottom-right image shows the same plane near the top surface, (b) intensity distribution on the planes corresponding to those in (b), calculated from Eq. (1).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( r ) = n , m E n e i ( k n r + ϕ n ) E m * e i ( k m r + ϕ m ) ,
E c r = 24 γ h 4 ( 2 R ) 3 D 2 ,

Metrics