Abstract

A highly efficient design of a two-channel wavelength demultiplexer in the visible region is presented with finite-difference time-domain simulations. The design process is described in detail with particular attention to the challenges inherent in fabrication of an actual device. A 2D triangular lattice photonic crystal with 75nm air pores in a silicon nitride planar waveguide provides the confinement for visible light. The device losses due to fabrication errors such as stitching misalignment of write fields during e-beam lithography and variation in air pore diameters from etching are modeled using realistic parameters from initial fabrication runs. These simulation results will be used to guide our next generation design of high efficiency photonic crystal based demultiplexing devices.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Johnson and J. D. Joannopoulos, "Designing synthetic optical media: Photonic Crystals," ActaMater. 51, 5823-5835 (2003).
    [CrossRef]
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  3. T. D. Happ, A. Markard, M. Kamp, A. Forchel, S. Anand, J.-L. Gentner, and N. Bouadma, "Nano-fabrication of two-dimensional photonic crystal mirrors for 1.5 μm short cavity lasers," J. Vac. Sci. Technol. B 19, 2775-2778 (2001).
    [CrossRef]
  4. M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
    [CrossRef]
  5. E. Centeno, B. Guizal, and D. Felbacq, "Multiplexing & demultiplexing with photonic crystal," J. Opt. A: Pure Appl. Opt. 1, L10-L13 (1999)
    [CrossRef]
  6. C. Jin, S. Fan, S. Han, and D. Zhang, "Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration," IEEE J. Quantum Electron. 39, 160-165 (2003).
    [CrossRef]
  7. S. Kim, I. Park, H. Lim, and C. -S. Kee, "Highly efficient photonic crystal-based multichannel drop filters of three-port system with reflection feedback," Opt. Express 12, 5518-5525 (2004).
    [CrossRef] [PubMed]
  8. A. Sharkawy, S. Shi, and D. W. Prather, "Multichannel wavelength division multiplexing with photonic crystals," Appl. Opt. 40, 2247-2252 (2001).
    [CrossRef]
  9. M. Koshiba, "Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers," J. Lightwave Technol.,  19, 1970-1975, (2001).
    [CrossRef]
  10. D. Pustai, A. Sharkawy, S. Shouyuan, and D. W. Prather, "Tunable photonic crystal microcavities," Appl. Opt. 41, 5574-5579 (2002).
    [CrossRef] [PubMed]
  11. J. Zimmermann, M. Kamp, A. Forchel, and R. Marz, "Photonic crystal waveguide directional couplers as wavelength selective optical filters," Opt. Commun. 230,387-392 (2004).
    [CrossRef]
  12. F. S. Chien, Y. Hsu, W. Hsieh, and S. Cheng, "Dual wavelength demultiplexing by coupling and decoupling of photonic crystal waveguides," Opt. Express 12, 1119-1125 (2004).
    [CrossRef] [PubMed]
  13. B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, "Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms," Opt. Express 14, 2413-2422 (2006).
    [CrossRef] [PubMed]
  14. N. J. Florous, K. Saitoh, and M. Koshiba, "Three-color photonic crystal demultiplexer based on ultralow-refractive-index metamaterial technology," Opt. Lett. 30, 2736-2738 (2005).http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-20-2736
    [CrossRef] [PubMed]
  15. T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. T. Kristensen, " Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006).
    [CrossRef]
  16. FDTD computation by EMPLab software running on EMPhotonics Computer.
  17. S. Fan and J. D. Joannopoulos, "Analysis of Guided Resonances in Photonic crystal slabs," Phys. Rev B 65, 235112 (2001).
    [CrossRef]
  18. K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis, (John Wiley & Sons, 2001), Chap. 2.
    [CrossRef]
  19. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, N. J. 1995), Chap. 5.
  20. M. Koshiba, M. Tsuji, and Y. Sasaki, "High-performance absorbing boundary conditions for photonic crystal waveguide simulations," IEEE Microwave Wirel. Compon. Lett. 11, 152-154 (2001).
    [CrossRef]
  21. A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58, 4809 (1998).
    [CrossRef]
  22. M. Tekeste, and J. Yarrison-Rice, "Modeling and fabrication results of a photonic crystal based wavelength demultiplexers," in Proceedings of IEEE Conference on Nanotechnology2006, (To be published).
  23. R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäckel "An efficient proximity- effect correction method for electron-beam patterning of photonic-crystal devices," Microelectron. Eng. 67-68, 182-188 (2003).
    [CrossRef]

2006 (3)

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. T. Kristensen, " Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006).
[CrossRef]

M. Tekeste, and J. Yarrison-Rice, "Modeling and fabrication results of a photonic crystal based wavelength demultiplexers," in Proceedings of IEEE Conference on Nanotechnology2006, (To be published).

B. Momeni, J. Huang, M. Soltani, M. Askari, S. Mohammadi, M. Rakhshandehroo, and A. Adibi, "Compact wavelength demultiplexing using focusing negative index photonic crystal superprisms," Opt. Express 14, 2413-2422 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (3)

2003 (3)

R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäckel "An efficient proximity- effect correction method for electron-beam patterning of photonic-crystal devices," Microelectron. Eng. 67-68, 182-188 (2003).
[CrossRef]

C. Jin, S. Fan, S. Han, and D. Zhang, "Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration," IEEE J. Quantum Electron. 39, 160-165 (2003).
[CrossRef]

S. G. Johnson and J. D. Joannopoulos, "Designing synthetic optical media: Photonic Crystals," ActaMater. 51, 5823-5835 (2003).
[CrossRef]

2002 (2)

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

D. Pustai, A. Sharkawy, S. Shouyuan, and D. W. Prather, "Tunable photonic crystal microcavities," Appl. Opt. 41, 5574-5579 (2002).
[CrossRef] [PubMed]

2001 (5)

T. D. Happ, A. Markard, M. Kamp, A. Forchel, S. Anand, J.-L. Gentner, and N. Bouadma, "Nano-fabrication of two-dimensional photonic crystal mirrors for 1.5 μm short cavity lasers," J. Vac. Sci. Technol. B 19, 2775-2778 (2001).
[CrossRef]

A. Sharkawy, S. Shi, and D. W. Prather, "Multichannel wavelength division multiplexing with photonic crystals," Appl. Opt. 40, 2247-2252 (2001).
[CrossRef]

M. Koshiba, "Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers," J. Lightwave Technol.,  19, 1970-1975, (2001).
[CrossRef]

S. Fan and J. D. Joannopoulos, "Analysis of Guided Resonances in Photonic crystal slabs," Phys. Rev B 65, 235112 (2001).
[CrossRef]

M. Koshiba, M. Tsuji, and Y. Sasaki, "High-performance absorbing boundary conditions for photonic crystal waveguide simulations," IEEE Microwave Wirel. Compon. Lett. 11, 152-154 (2001).
[CrossRef]

1999 (1)

E. Centeno, B. Guizal, and D. Felbacq, "Multiplexing & demultiplexing with photonic crystal," J. Opt. A: Pure Appl. Opt. 1, L10-L13 (1999)
[CrossRef]

1998 (1)

A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58, 4809 (1998).
[CrossRef]

1997 (1)

Adibi, A.

Anand, S.

T. D. Happ, A. Markard, M. Kamp, A. Forchel, S. Anand, J.-L. Gentner, and N. Bouadma, "Nano-fabrication of two-dimensional photonic crystal mirrors for 1.5 μm short cavity lasers," J. Vac. Sci. Technol. B 19, 2775-2778 (2001).
[CrossRef]

Askari, M.

Birks, T. A.

Borel, P. I.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. T. Kristensen, " Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006).
[CrossRef]

Bouadma, N.

T. D. Happ, A. Markard, M. Kamp, A. Forchel, S. Anand, J.-L. Gentner, and N. Bouadma, "Nano-fabrication of two-dimensional photonic crystal mirrors for 1.5 μm short cavity lasers," J. Vac. Sci. Technol. B 19, 2775-2778 (2001).
[CrossRef]

Centeno, E.

E. Centeno, B. Guizal, and D. Felbacq, "Multiplexing & demultiplexing with photonic crystal," J. Opt. A: Pure Appl. Opt. 1, L10-L13 (1999)
[CrossRef]

Cheng, S.

Chien, F. S.

Erni, D.

R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäckel "An efficient proximity- effect correction method for electron-beam patterning of photonic-crystal devices," Microelectron. Eng. 67-68, 182-188 (2003).
[CrossRef]

Fan, S.

C. Jin, S. Fan, S. Han, and D. Zhang, "Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration," IEEE J. Quantum Electron. 39, 160-165 (2003).
[CrossRef]

S. Fan and J. D. Joannopoulos, "Analysis of Guided Resonances in Photonic crystal slabs," Phys. Rev B 65, 235112 (2001).
[CrossRef]

A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58, 4809 (1998).
[CrossRef]

Felbacq, D.

E. Centeno, B. Guizal, and D. Felbacq, "Multiplexing & demultiplexing with photonic crystal," J. Opt. A: Pure Appl. Opt. 1, L10-L13 (1999)
[CrossRef]

Florous, N. J.

Forchel, A.

J. Zimmermann, M. Kamp, A. Forchel, and R. Marz, "Photonic crystal waveguide directional couplers as wavelength selective optical filters," Opt. Commun. 230,387-392 (2004).
[CrossRef]

T. D. Happ, A. Markard, M. Kamp, A. Forchel, S. Anand, J.-L. Gentner, and N. Bouadma, "Nano-fabrication of two-dimensional photonic crystal mirrors for 1.5 μm short cavity lasers," J. Vac. Sci. Technol. B 19, 2775-2778 (2001).
[CrossRef]

Frandsen, L. H.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. T. Kristensen, " Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006).
[CrossRef]

Gentner, J.-L.

T. D. Happ, A. Markard, M. Kamp, A. Forchel, S. Anand, J.-L. Gentner, and N. Bouadma, "Nano-fabrication of two-dimensional photonic crystal mirrors for 1.5 μm short cavity lasers," J. Vac. Sci. Technol. B 19, 2775-2778 (2001).
[CrossRef]

Gogna, P.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

Guizal, B.

E. Centeno, B. Guizal, and D. Felbacq, "Multiplexing & demultiplexing with photonic crystal," J. Opt. A: Pure Appl. Opt. 1, L10-L13 (1999)
[CrossRef]

Han, S.

C. Jin, S. Fan, S. Han, and D. Zhang, "Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration," IEEE J. Quantum Electron. 39, 160-165 (2003).
[CrossRef]

Happ, T. D.

T. D. Happ, A. Markard, M. Kamp, A. Forchel, S. Anand, J.-L. Gentner, and N. Bouadma, "Nano-fabrication of two-dimensional photonic crystal mirrors for 1.5 μm short cavity lasers," J. Vac. Sci. Technol. B 19, 2775-2778 (2001).
[CrossRef]

Harpoth, A.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. T. Kristensen, " Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006).
[CrossRef]

Hede, K. K.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. T. Kristensen, " Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006).
[CrossRef]

Hsieh, W.

Hsu, Y.

Huang, J.

Jäckel, H.

R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäckel "An efficient proximity- effect correction method for electron-beam patterning of photonic-crystal devices," Microelectron. Eng. 67-68, 182-188 (2003).
[CrossRef]

Jin, C.

C. Jin, S. Fan, S. Han, and D. Zhang, "Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration," IEEE J. Quantum Electron. 39, 160-165 (2003).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, "Designing synthetic optical media: Photonic Crystals," ActaMater. 51, 5823-5835 (2003).
[CrossRef]

S. Fan and J. D. Joannopoulos, "Analysis of Guided Resonances in Photonic crystal slabs," Phys. Rev B 65, 235112 (2001).
[CrossRef]

A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58, 4809 (1998).
[CrossRef]

Johnson, S. G.

S. G. Johnson and J. D. Joannopoulos, "Designing synthetic optical media: Photonic Crystals," ActaMater. 51, 5823-5835 (2003).
[CrossRef]

Jungo, M.

R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäckel "An efficient proximity- effect correction method for electron-beam patterning of photonic-crystal devices," Microelectron. Eng. 67-68, 182-188 (2003).
[CrossRef]

Kamp, M.

J. Zimmermann, M. Kamp, A. Forchel, and R. Marz, "Photonic crystal waveguide directional couplers as wavelength selective optical filters," Opt. Commun. 230,387-392 (2004).
[CrossRef]

T. D. Happ, A. Markard, M. Kamp, A. Forchel, S. Anand, J.-L. Gentner, and N. Bouadma, "Nano-fabrication of two-dimensional photonic crystal mirrors for 1.5 μm short cavity lasers," J. Vac. Sci. Technol. B 19, 2775-2778 (2001).
[CrossRef]

Kee, C. -S.

Kim, S.

Knight, J. C.

Koshiba, M.

Kristensen, M. T.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. T. Kristensen, " Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006).
[CrossRef]

Lim, H.

Loncar, M.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

Markard, A.

T. D. Happ, A. Markard, M. Kamp, A. Forchel, S. Anand, J.-L. Gentner, and N. Bouadma, "Nano-fabrication of two-dimensional photonic crystal mirrors for 1.5 μm short cavity lasers," J. Vac. Sci. Technol. B 19, 2775-2778 (2001).
[CrossRef]

Marz, R.

J. Zimmermann, M. Kamp, A. Forchel, and R. Marz, "Photonic crystal waveguide directional couplers as wavelength selective optical filters," Opt. Commun. 230,387-392 (2004).
[CrossRef]

Mekis, A.

A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58, 4809 (1998).
[CrossRef]

Mohammadi, S.

Momeni, B.

Niemi, T.

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. T. Kristensen, " Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006).
[CrossRef]

Park, I.

Prather, D. W.

Pustai, D.

Qiu, Y.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

Rakhshandehroo, M.

Robin, F.

R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäckel "An efficient proximity- effect correction method for electron-beam patterning of photonic-crystal devices," Microelectron. Eng. 67-68, 182-188 (2003).
[CrossRef]

Russell, P. St. J.

Saitoh, K.

Sasaki, Y.

M. Koshiba, M. Tsuji, and Y. Sasaki, "High-performance absorbing boundary conditions for photonic crystal waveguide simulations," IEEE Microwave Wirel. Compon. Lett. 11, 152-154 (2001).
[CrossRef]

Scherer, A.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

Sharkawy, A.

Shi, S.

Shouyuan, S.

Soltani, M.

Strasser, P.

R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäckel "An efficient proximity- effect correction method for electron-beam patterning of photonic-crystal devices," Microelectron. Eng. 67-68, 182-188 (2003).
[CrossRef]

Tekeste, M.

M. Tekeste, and J. Yarrison-Rice, "Modeling and fabrication results of a photonic crystal based wavelength demultiplexers," in Proceedings of IEEE Conference on Nanotechnology2006, (To be published).

Tsuji, M.

M. Koshiba, M. Tsuji, and Y. Sasaki, "High-performance absorbing boundary conditions for photonic crystal waveguide simulations," IEEE Microwave Wirel. Compon. Lett. 11, 152-154 (2001).
[CrossRef]

Wüest, R.

R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäckel "An efficient proximity- effect correction method for electron-beam patterning of photonic-crystal devices," Microelectron. Eng. 67-68, 182-188 (2003).
[CrossRef]

Yarrison-Rice, J.

M. Tekeste, and J. Yarrison-Rice, "Modeling and fabrication results of a photonic crystal based wavelength demultiplexers," in Proceedings of IEEE Conference on Nanotechnology2006, (To be published).

Yoshie, T.

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

Zhang, D.

C. Jin, S. Fan, S. Han, and D. Zhang, "Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration," IEEE J. Quantum Electron. 39, 160-165 (2003).
[CrossRef]

Zimmermann, J.

J. Zimmermann, M. Kamp, A. Forchel, and R. Marz, "Photonic crystal waveguide directional couplers as wavelength selective optical filters," Opt. Commun. 230,387-392 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. Qiu, "Low-threshold photonic crystal laser," Appl. Phys. Lett. 81, 2680-2682 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. Jin, S. Fan, S. Han, and D. Zhang, "Reflectionless multichannel wavelength demultiplexer in a transmission resonator configuration," IEEE J. Quantum Electron. 39, 160-165 (2003).
[CrossRef]

IEEE Microwave Wirel. Compon. Lett. (1)

M. Koshiba, M. Tsuji, and Y. Sasaki, "High-performance absorbing boundary conditions for photonic crystal waveguide simulations," IEEE Microwave Wirel. Compon. Lett. 11, 152-154 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Niemi, L. H. Frandsen, K. K. Hede, A. Harpoth, P. I. Borel, and M. T. Kristensen, " Wavelength-division demultiplexing using photonic crystal waveguides," IEEE Photon. Technol. Lett. 18, 226-228 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A: Pure Appl. Opt. (1)

E. Centeno, B. Guizal, and D. Felbacq, "Multiplexing & demultiplexing with photonic crystal," J. Opt. A: Pure Appl. Opt. 1, L10-L13 (1999)
[CrossRef]

J. Vac. Sci. Technol. B (1)

T. D. Happ, A. Markard, M. Kamp, A. Forchel, S. Anand, J.-L. Gentner, and N. Bouadma, "Nano-fabrication of two-dimensional photonic crystal mirrors for 1.5 μm short cavity lasers," J. Vac. Sci. Technol. B 19, 2775-2778 (2001).
[CrossRef]

Mater. (1)

S. G. Johnson and J. D. Joannopoulos, "Designing synthetic optical media: Photonic Crystals," ActaMater. 51, 5823-5835 (2003).
[CrossRef]

Microelectron. Eng. (1)

R. Wüest, P. Strasser, M. Jungo, F. Robin, D. Erni, and H. Jäckel "An efficient proximity- effect correction method for electron-beam patterning of photonic-crystal devices," Microelectron. Eng. 67-68, 182-188 (2003).
[CrossRef]

Opt. Commun. (1)

J. Zimmermann, M. Kamp, A. Forchel, and R. Marz, "Photonic crystal waveguide directional couplers as wavelength selective optical filters," Opt. Commun. 230,387-392 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev B (1)

S. Fan and J. D. Joannopoulos, "Analysis of Guided Resonances in Photonic crystal slabs," Phys. Rev B 65, 235112 (2001).
[CrossRef]

Phys. Rev. B (1)

A. Mekis, S. Fan, and J. D. Joannopoulos, "Bound states in photonic crystal waveguides and waveguide bends," Phys. Rev. B 58, 4809 (1998).
[CrossRef]

Proceedings of IEEE Conference on Nanotechnology (1)

M. Tekeste, and J. Yarrison-Rice, "Modeling and fabrication results of a photonic crystal based wavelength demultiplexers," in Proceedings of IEEE Conference on Nanotechnology2006, (To be published).

Other (3)

K. Kawano and T. Kitoh, Introduction to Optical Waveguide Analysis, (John Wiley & Sons, 2001), Chap. 2.
[CrossRef]

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, N. J. 1995), Chap. 5.

FDTD computation by EMPLab software running on EMPhotonics Computer.

Supplementary Material (2)

» Media 1: GIF (1183 KB)     
» Media 2: GIF (2071 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

A photonic band gap dispersion curve. Allowed TE modes are drawn in red, and

Fig. 2.
Fig. 2.

(a). 9 x 9 matrix used in the simulation with a point defect at the center. (b) The simulation results in a high intensity field building up in the defect cavity when the defect size (R = 125 nm) and wavelength (λ = 514.5 nm) are well matched. (c) The normalized intensity profile for the defect cavity with different defect radii for four different wavelengths.

Fig. 3.
Fig. 3.

Detail design of a two channel WDDM. Output Channel 1 is for 514.5 nm line

Fig. 4.
Fig. 4.

(a). (1.2 MB) Movie of simulation results for a 514.5 nm spectrum line. (b). (2.1 MB) Movie of simulation results for a 496.5 nm spectrum line. In (a and b) the oval shape at the end of the channels shows the position where the average steady state was measured.

Fig. 5.
Fig. 5.

Transmission spectra for each output channel as a function of input frequency.

Fig. 6.
Fig. 6.

An SEM image of a photonic crystal waveguide with a defect caused by the field

Fig. 7.
Fig. 7.

PBG lattice with randomly distributed air pore imperfections, blue are 140

Fig. 8.
Fig. 8.

Defect Fabrication error. (a) model for 496.5nm line with defect fabrication error. (b) SEM image of overlapped air pore and cavity for 496.5nm line

Fig. 9.
Fig. 9.

Transmission intensity as a function of a) horizontal stitching error and b) vertical stitching error.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k o n 2 2 n eff 2 h = tan 1 ( n 2 2 n eff 2 n eff 2 n 1 2 ) tan 1 ( n 2 2 n eff 2 n eff 2 n 3 2 ) + ( q + 1 ) π

Metrics