Abstract

We study experimentally the spectral evolution of supercontinua in two different microstructured fibers that are pumped with nanosecond pulses from dual-wavelength sources of either 1064/532 nm or 946/473 nm output. The experimental findings are compared with simulations based on numerically solving the nonlinear Schrödinger equation. The role of cascaded cross-phase modulation processes and the group-delay properties of the fiber are emphasized and demonstrated to determine the extent of the broadening of the continua to the visible wavelengths.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Shi, P. Li, S. Yin and Z. Liu, "Chromatic Confocal Microscopy using supercontinuum light," Opt. Express 12, 2096-2101 (2004).
    [CrossRef] [PubMed]
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka and S. Windeler, "Ultrahighresolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  3. J. Swartling, A. Bassi, C. D’Andrea, A. Pifferi, A. Torricelli and R. Cubeddu, "Dynamic time-resolved diffuse spectroscopy based on supercontinuum light pulses," Appl. Opt. 44, 4684-4692 (2005).
    [CrossRef] [PubMed]
  4. K. Lindfors, T. Kalkbrenner, P. Stoller, V. Sandoghdar, "Detection and Spectroscopy of Gold Nanoparticles Using Supercontinuum White Light Confocal Microscopy," Phys. Rev. Lett. 93, 037401 (2004).
    [CrossRef] [PubMed]
  5. J. J. Zayhowski, "Passively Q-switched Nd:YAG microchip lasers and applications," J. Alloys Compd. 303, 393-400 (2000).
    [CrossRef]
  6. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana and P. St. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004).
    [CrossRef] [PubMed]
  7. http://www.crystal-fibre.com/support/Supercontinuum- SC-5.0-1040.pdf
  8. T. Y. Fan and R. L. Byer, "Diode Laser-Pumped Solid-State Lasers," IEEE J. Quantum Electron. 24, 895-912 (1998).
    [CrossRef]
  9. J. J. Zayhowski, "Microchip lasers," Opt. Mater. 11, 255-267 (1999).
    [CrossRef]
  10. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler and B. J. Eggleton, "Compact broadband continuum source based on a microchip laser pumped microstructured fiber," El. Lett. 37, 558-560 (2001).
    [CrossRef]
  11. S. G. Leon-Saval, T. A. Birks,W. J. Wadsworth, P. St. J. Russell and M.W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004).
    [CrossRef] [PubMed]
  12. A. Mussot, T. Sylvestre, L. Provino and H. Maillotte, "Generation of broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanoseconnd microchip laser," Opt. Lett. 28, 1820-1822 (2003).
    [CrossRef] [PubMed]
  13. P. A. Champert, V. Couderc, P. Leproux, S. F evrier, V. Tombelaine, L. Labont´e, P. Roy and C. Froehly, "Whitelight supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system," Opt. Express 12,4366-4371 (2004).
    [CrossRef] [PubMed]
  14. P. A. Champert, V. Couderc, L. Grossard, A. Barthelmy, C. Froehly, S. Fevrier, P. Leproux, P. Roy, J. L. Auguste, L. Labonte, J. M. Blondy, D. Pagoux, P. Nerin and D. Lefevre, "Broadband, single mode, visible continuum generation in normally dispersive fiber," NLGW, Post deadline paper PD1, Toronto, Canada, 28-31 (2004).
  15. S.C. Buchter, M. Kaivola, H. Ludvigsen and K. P. Hansen, "Miniature supercontinuum laser sources," CLEO ’2004 OSA Technical Digest, Paper CTuP58 (2004).
  16. G. Genty, M. Lehtonen and H. Ludvigsen, "Route to broadband blue-light generation in microstructured optical fibers," Opt. Lett. 30,756-758 (2005).
    [CrossRef] [PubMed]
  17. T. Schreiber, T. V. Andersen, D. Schimpf, J. Limbert and A. Tunnermann, "Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths," Opt. Express 13,9556-9569 (2005).
    [CrossRef] [PubMed]
  18. www.rsoftdesign.com
  19. G. P. Agrawal, "Nonlinear fiber optics" (Academic, 2001).
  20. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
    [CrossRef]
  21. P. L. Franc¸ois, "Nonlinear propagation of ultrashort pulses in optical fibers: total field formulation in the frequency domain," J. Opt. Soc. Am. B 8, 276-293, (1991).
    [CrossRef]
  22. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon and D. S. Chemla, "Femtosecond distributed soliton spectrum in fibers," J. Opt. Soc. Am. B 6, 1149-1158 (1989).
    [CrossRef]
  23. A. K. Abeeluck and C. Headley, "Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation,"  30,61-63 (2005).
  24. E. A. Golovchenko, P. V. Mamyshev, A. N. Pilipetski and E. M. Dianov, "Numerical analysis of the Raman spectrum evolution and soliton pulse generation in single-mode fibers," J. Opt. Soc. Am. B 8, 1626 - 1632 (1991).
    [CrossRef]
  25. G. Genty, M. Lehtonen and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructures fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004).
    [CrossRef] [PubMed]
  26. F. Vanholsbeeck, S. Martin-Lopez, M. Gonz alez-Herr aez and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005).
    [CrossRef] [PubMed]

2005 (4)

2004 (6)

2003 (1)

2001 (2)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler and B. J. Eggleton, "Compact broadband continuum source based on a microchip laser pumped microstructured fiber," El. Lett. 37, 558-560 (2001).
[CrossRef]

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka and S. Windeler, "Ultrahighresolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

2000 (1)

J. J. Zayhowski, "Passively Q-switched Nd:YAG microchip lasers and applications," J. Alloys Compd. 303, 393-400 (2000).
[CrossRef]

1999 (1)

J. J. Zayhowski, "Microchip lasers," Opt. Mater. 11, 255-267 (1999).
[CrossRef]

1998 (1)

T. Y. Fan and R. L. Byer, "Diode Laser-Pumped Solid-State Lasers," IEEE J. Quantum Electron. 24, 895-912 (1998).
[CrossRef]

1991 (2)

1989 (2)

M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon and D. S. Chemla, "Femtosecond distributed soliton spectrum in fibers," J. Opt. Soc. Am. B 6, 1149-1158 (1989).
[CrossRef]

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

Andersen, T. V.

Bar-Joseph, I.

Bassi, A.

Biancalana, F.

Birks, T. A.

Blow, K. J.

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

Byer, R. L.

T. Y. Fan and R. L. Byer, "Diode Laser-Pumped Solid-State Lasers," IEEE J. Quantum Electron. 24, 895-912 (1998).
[CrossRef]

Champert, P. A.

Chemla, D. S.

Chudoba, C.

Couderc, V.

Cubeddu, R.

D’Andrea, C.

Dianov, E. M.

Dudley, J. M.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler and B. J. Eggleton, "Compact broadband continuum source based on a microchip laser pumped microstructured fiber," El. Lett. 37, 558-560 (2001).
[CrossRef]

Eggleton, B. J.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler and B. J. Eggleton, "Compact broadband continuum source based on a microchip laser pumped microstructured fiber," El. Lett. 37, 558-560 (2001).
[CrossRef]

Fan, T. Y.

T. Y. Fan and R. L. Byer, "Diode Laser-Pumped Solid-State Lasers," IEEE J. Quantum Electron. 24, 895-912 (1998).
[CrossRef]

Franc¸ois, P. L.

Fujimoto, J. G.

Genty, G.

Ghanta, R. K.

Golovchenko, E. A.

Gordon, J. P.

Grossard, N.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler and B. J. Eggleton, "Compact broadband continuum source based on a microchip laser pumped microstructured fiber," El. Lett. 37, 558-560 (2001).
[CrossRef]

Hartl, I.

Islam, M. N.

Joly, N.

Kalkbrenner, T.

K. Lindfors, T. Kalkbrenner, P. Stoller, V. Sandoghdar, "Detection and Spectroscopy of Gold Nanoparticles Using Supercontinuum White Light Confocal Microscopy," Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Knight, J. C.

Ko, T. H.

Lehtonen, M.

Leon-Saval, S. G.

Leproux, P.

Li, P.

Li, X. D.

Limbert, J.

Lindfors, K.

K. Lindfors, T. Kalkbrenner, P. Stoller, V. Sandoghdar, "Detection and Spectroscopy of Gold Nanoparticles Using Supercontinuum White Light Confocal Microscopy," Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Liu, Z.

Ludvigsen, H.

Maillotte, H.

A. Mussot, T. Sylvestre, L. Provino and H. Maillotte, "Generation of broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanoseconnd microchip laser," Opt. Lett. 28, 1820-1822 (2003).
[CrossRef] [PubMed]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler and B. J. Eggleton, "Compact broadband continuum source based on a microchip laser pumped microstructured fiber," El. Lett. 37, 558-560 (2001).
[CrossRef]

Mamyshev, P. V.

Martin-Lopez, S.

Mason, M.W.

Mussot, A.

Pifferi, A.

Pilipetski, A. N.

Provino, L.

A. Mussot, T. Sylvestre, L. Provino and H. Maillotte, "Generation of broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanoseconnd microchip laser," Opt. Lett. 28, 1820-1822 (2003).
[CrossRef] [PubMed]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler and B. J. Eggleton, "Compact broadband continuum source based on a microchip laser pumped microstructured fiber," El. Lett. 37, 558-560 (2001).
[CrossRef]

Ranka, J. K.

Russell, P. St. J.

Sandoghdar, V.

K. Lindfors, T. Kalkbrenner, P. Stoller, V. Sandoghdar, "Detection and Spectroscopy of Gold Nanoparticles Using Supercontinuum White Light Confocal Microscopy," Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Schimpf, D.

Schreiber, T.

Shi, K.

Stoller, P.

K. Lindfors, T. Kalkbrenner, P. Stoller, V. Sandoghdar, "Detection and Spectroscopy of Gold Nanoparticles Using Supercontinuum White Light Confocal Microscopy," Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Sucha, G.

Swartling, J.

Sylvestre, T.

Torricelli, A.

Tunnermann, A.

Vanholsbeeck, F.

Wadsworth, W. J.

Wegener, M.

Windeler, R. S.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler and B. J. Eggleton, "Compact broadband continuum source based on a microchip laser pumped microstructured fiber," El. Lett. 37, 558-560 (2001).
[CrossRef]

Windeler, S.

Wood, D.

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

Yin, S.

Zayhowski, J. J.

J. J. Zayhowski, "Passively Q-switched Nd:YAG microchip lasers and applications," J. Alloys Compd. 303, 393-400 (2000).
[CrossRef]

J. J. Zayhowski, "Microchip lasers," Opt. Mater. 11, 255-267 (1999).
[CrossRef]

Appl. Opt. (1)

El. Lett. (1)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler and B. J. Eggleton, "Compact broadband continuum source based on a microchip laser pumped microstructured fiber," El. Lett. 37, 558-560 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

T. Y. Fan and R. L. Byer, "Diode Laser-Pumped Solid-State Lasers," IEEE J. Quantum Electron. 24, 895-912 (1998).
[CrossRef]

J. Alloys Compd. (1)

J. J. Zayhowski, "Passively Q-switched Nd:YAG microchip lasers and applications," J. Alloys Compd. 303, 393-400 (2000).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Express (7)

G. Genty, M. Lehtonen and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructures fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004).
[CrossRef] [PubMed]

F. Vanholsbeeck, S. Martin-Lopez, M. Gonz alez-Herr aez and S. Coen, "The role of pump incoherence in continuous-wave supercontinuum generation," Opt. Express 13, 6615-6625 (2005).
[CrossRef] [PubMed]

T. Schreiber, T. V. Andersen, D. Schimpf, J. Limbert and A. Tunnermann, "Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths," Opt. Express 13,9556-9569 (2005).
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks,W. J. Wadsworth, P. St. J. Russell and M.W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004).
[CrossRef] [PubMed]

P. A. Champert, V. Couderc, P. Leproux, S. F evrier, V. Tombelaine, L. Labont´e, P. Roy and C. Froehly, "Whitelight supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system," Opt. Express 12,4366-4371 (2004).
[CrossRef] [PubMed]

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana and P. St. J. Russell, "Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres," Opt. Express 12, 299-309 (2004).
[CrossRef] [PubMed]

K. Shi, P. Li, S. Yin and Z. Liu, "Chromatic Confocal Microscopy using supercontinuum light," Opt. Express 12, 2096-2101 (2004).
[CrossRef] [PubMed]

Opt. Lett. (3)

Opt. Mater. (1)

J. J. Zayhowski, "Microchip lasers," Opt. Mater. 11, 255-267 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

K. Lindfors, T. Kalkbrenner, P. Stoller, V. Sandoghdar, "Detection and Spectroscopy of Gold Nanoparticles Using Supercontinuum White Light Confocal Microscopy," Phys. Rev. Lett. 93, 037401 (2004).
[CrossRef] [PubMed]

Other (6)

http://www.crystal-fibre.com/support/Supercontinuum- SC-5.0-1040.pdf

P. A. Champert, V. Couderc, L. Grossard, A. Barthelmy, C. Froehly, S. Fevrier, P. Leproux, P. Roy, J. L. Auguste, L. Labonte, J. M. Blondy, D. Pagoux, P. Nerin and D. Lefevre, "Broadband, single mode, visible continuum generation in normally dispersive fiber," NLGW, Post deadline paper PD1, Toronto, Canada, 28-31 (2004).

S.C. Buchter, M. Kaivola, H. Ludvigsen and K. P. Hansen, "Miniature supercontinuum laser sources," CLEO ’2004 OSA Technical Digest, Paper CTuP58 (2004).

A. K. Abeeluck and C. Headley, "Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation,"  30,61-63 (2005).

www.rsoftdesign.com

G. P. Agrawal, "Nonlinear fiber optics" (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Calculated group-delay (a) and group-delay matching (b) for the PCF-I (black) and PCF-II (red) fibers.

Fig. 2.
Fig. 2.

Experimental spectra of the evolution of the visible and infrared continua in 2-meters of PCF-I fiber with 1064/532 nm dual-wavelength pumping. The input peak power was increased in order to qualitatively demonstrate the evolution of the continua. The maximum peak power in sub-figure (h) is 350 W at 1064 nm and 50 W at 532 nm.

Fig. 3.
Fig. 3.

Experimental spectra of the evolution of the visible continuum in 2-meters of the PCF-I fiber with 1064/532 nm dual-wavelength pumping. The input peak power was increased in order to qualitatively demonstrate the evolution of the continuum. The maximum peak power in sub-figure (h) is 350 W at 1064 nm and 50 W at 532 nm.

Fig. 4.
Fig. 4.

Experimental spectra of the evolution of the visible and infrared continua in PCF-I fiber with 1064/532 nm dual-wavelength pumping. The subfigures correspond to propagations lengths from 60 cm to 180 cm. The peak power coupled into the fiber is 350 W at 1064 nm and 50 W at 532 nm in all the spectra.

Fig. 5.
Fig. 5.

Simulated spectral evolution of the 1064/532 nm dual-wavelength pumped continuum generation in PCF-I as a function of propagation distance. The peak power in the fiber is 350 W at 1064 nm and 50 W at 532 nm in all the spectra.

Fig. 6.
Fig. 6.

Simulated time evolution of the 1064 nm (a) and 532 nm (b) pump pulses in PCF-I as a function of propagation distance.

Fig. 7.
Fig. 7.

Visible continua generated in PCF-I (black) and PCF-II (red) fibers using 532/1064 nm (a) and 473/946 nm (b) dual-wavelength pumping.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A 1 z i k 1 i k k ! β k 1 k A 1 T k = 1 ( 1 + i ω 1 T ) A 1 R ( T ) [ A 1 z T T 2 + 2 A 2 ( z , T T ) 2 ] dT
A 2 z i k 1 i k k ! β k 2 k A 2 T k = 2 ( 1 + i ω 2 T ) A 2 R ( T ) [ A 2 z T T 2 + 2 A 1 ( z , T T ) 2 ] dT

Metrics