Abstract

We study experimentally the spectral evolution of supercontinua in two different microstructured fibers that are pumped with nanosecond pulses from dual-wavelength sources of either 1064/532 nm or 946/473 nm output. The experimental findings are compared with simulations based on numerically solving the nonlinear Schrödinger equation. The role of cascaded cross-phase modulation processes and the group-delay properties of the fiber are emphasized and demonstrated to determine the extent of the broadening of the continua to the visible wavelengths.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic Confocal Microscopy using supercontinuum light,” Opt. Express 12, 2096–2101 (2004).
    [CrossRef] [PubMed]
  2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
    [CrossRef]
  3. J. Swartling, A. Bassi, C. D’Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, “Dynamic time-resolved diffuse spectroscopy based on supercontinuum light pulses,” Appl. Opt. 44, 4684–4692 (2005).
    [CrossRef] [PubMed]
  4. K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and Spectroscopy of Gold Nanoparticles Using Supercontinuum White Light Confocal Microscopy,” Phys. Rev. Lett. 93, 037401, (2004).
    [CrossRef] [PubMed]
  5. J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications”, J. Alloys Compd. 303, 393–400 (2000).
    [CrossRef]
  6. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299–309 (2004).
    [CrossRef] [PubMed]
  7. http://www.crystal-fibre.com/support/Supercontinuum - SC-5.0-1040.pdf
  8. T. Y. Fan and R. L. Byer, “Diode Laser-Pumped Solid-State Lasers,” IEEE J. Quantum Electron. 24, 895–912 (1998).
    [CrossRef]
  9. J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11, 255–267 (1999).
    [CrossRef]
  10. L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” El. Lett. 37, 558–560 (2001).
    [CrossRef]
  11. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, ”Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
    [CrossRef] [PubMed]
  12. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanoseconnd microchip laser,” Opt. Lett. 28, 1820–1822 (2003).
    [CrossRef] [PubMed]
  13. P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, and C. Froehly, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004).
    [CrossRef] [PubMed]
  14. P. A. Champert, V. Couderc, L. Grossard, A. Barthélémy, C. Froehly, S. Février, P. Leproux, P. Roy, J. L. Auguste, L. Labonté, J. M. Blondy, D. Pagoux, P. Nérin, and D. Lefévre, “Broadband, single mode, visible continuum generation in normally dispersive fiber,” NLGW, Post deadline paper PD1, Toronto, Canada,28–31 (2004).
  15. S.C. Buchter, M. Kaivola, H. Ludvigsen, and K. P. Hansen, “Miniature supercontinuum laser sources,” CLEO ’04 Technical Digest, Paper CTuP58 (2004).
  16. G. Genty, M. Lehtonen, and H. Ludvigsen, “Route to broadband blue-light generation in microstructured optical fibers,” Opt. Lett. 30, 756–758 (2005).
    [CrossRef] [PubMed]
  17. T. Schreiber, T. V. Andersen, D. Schimpf, J. Limbert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13, 9556–9569 (2005).
    [CrossRef] [PubMed]
  18. www.rsoftdesign.com
  19. G. P. Agrawal, “Nonlinear fiber optics” ( Academic, 2001).
  20. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
    [CrossRef]
  21. P. L. François, “Nonlinear propagation of ultrashort pulses in optical fibers: total field formulation in the frequency domain,” J. Opt. Soc. Am. B 8, 276–293, (1991).
    [CrossRef]
  22. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B 6, 1149–1158 (1989).
    [CrossRef]
  23. A. K. Abeeluck and C. Headley, “Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation,”  30, 61–63 (2005).
  24. E. A. Golovchenko, P. V. Mamyshev, A. N. Pilipetski, and E. M. Dianov, “Numerical analysis of the Raman spectrum evolution and soliton pulse generation in single-mode fibers,” J. Opt. Soc. Am. B 8, 1626–1632 (1991).
    [CrossRef]
  25. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructures fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004).
    [CrossRef] [PubMed]
  26. F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13, 6615–6625 (2005).
    [CrossRef] [PubMed]

2005 (5)

2004 (8)

P. A. Champert, V. Couderc, L. Grossard, A. Barthélémy, C. Froehly, S. Février, P. Leproux, P. Roy, J. L. Auguste, L. Labonté, J. M. Blondy, D. Pagoux, P. Nérin, and D. Lefévre, “Broadband, single mode, visible continuum generation in normally dispersive fiber,” NLGW, Post deadline paper PD1, Toronto, Canada,28–31 (2004).

S.C. Buchter, M. Kaivola, H. Ludvigsen, and K. P. Hansen, “Miniature supercontinuum laser sources,” CLEO ’04 Technical Digest, Paper CTuP58 (2004).

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and Spectroscopy of Gold Nanoparticles Using Supercontinuum White Light Confocal Microscopy,” Phys. Rev. Lett. 93, 037401, (2004).
[CrossRef] [PubMed]

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299–309 (2004).
[CrossRef] [PubMed]

K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic Confocal Microscopy using supercontinuum light,” Opt. Express 12, 2096–2101 (2004).
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, ”Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
[CrossRef] [PubMed]

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, and C. Froehly, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructures fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (2)

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608–610 (2001).
[CrossRef]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” El. Lett. 37, 558–560 (2001).
[CrossRef]

2000 (1)

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications”, J. Alloys Compd. 303, 393–400 (2000).
[CrossRef]

1999 (1)

J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11, 255–267 (1999).
[CrossRef]

1998 (1)

T. Y. Fan and R. L. Byer, “Diode Laser-Pumped Solid-State Lasers,” IEEE J. Quantum Electron. 24, 895–912 (1998).
[CrossRef]

1991 (2)

1989 (2)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B 6, 1149–1158 (1989).
[CrossRef]

Abeeluck, A. K.

A. K. Abeeluck and C. Headley, “Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation,”  30, 61–63 (2005).

Agrawal, G. P.

G. P. Agrawal, “Nonlinear fiber optics” ( Academic, 2001).

Andersen, T. V.

Auguste, J. L.

P. A. Champert, V. Couderc, L. Grossard, A. Barthélémy, C. Froehly, S. Février, P. Leproux, P. Roy, J. L. Auguste, L. Labonté, J. M. Blondy, D. Pagoux, P. Nérin, and D. Lefévre, “Broadband, single mode, visible continuum generation in normally dispersive fiber,” NLGW, Post deadline paper PD1, Toronto, Canada,28–31 (2004).

Bar-Joseph, I.

Barthélémy, A.

P. A. Champert, V. Couderc, L. Grossard, A. Barthélémy, C. Froehly, S. Février, P. Leproux, P. Roy, J. L. Auguste, L. Labonté, J. M. Blondy, D. Pagoux, P. Nérin, and D. Lefévre, “Broadband, single mode, visible continuum generation in normally dispersive fiber,” NLGW, Post deadline paper PD1, Toronto, Canada,28–31 (2004).

Bassi, A.

Biancalana, F.

Birks, T. A.

Blondy, J. M.

P. A. Champert, V. Couderc, L. Grossard, A. Barthélémy, C. Froehly, S. Février, P. Leproux, P. Roy, J. L. Auguste, L. Labonté, J. M. Blondy, D. Pagoux, P. Nérin, and D. Lefévre, “Broadband, single mode, visible continuum generation in normally dispersive fiber,” NLGW, Post deadline paper PD1, Toronto, Canada,28–31 (2004).

Blow, K. J.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

Buchter, S.C.

S.C. Buchter, M. Kaivola, H. Ludvigsen, and K. P. Hansen, “Miniature supercontinuum laser sources,” CLEO ’04 Technical Digest, Paper CTuP58 (2004).

Byer, R. L.

T. Y. Fan and R. L. Byer, “Diode Laser-Pumped Solid-State Lasers,” IEEE J. Quantum Electron. 24, 895–912 (1998).
[CrossRef]

Champert, P. A.

P. A. Champert, V. Couderc, L. Grossard, A. Barthélémy, C. Froehly, S. Février, P. Leproux, P. Roy, J. L. Auguste, L. Labonté, J. M. Blondy, D. Pagoux, P. Nérin, and D. Lefévre, “Broadband, single mode, visible continuum generation in normally dispersive fiber,” NLGW, Post deadline paper PD1, Toronto, Canada,28–31 (2004).

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, and C. Froehly, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004).
[CrossRef] [PubMed]

Chemla, D. S.

Chudoba, C.

Coen, S.

Couderc, V.

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, and C. Froehly, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004).
[CrossRef] [PubMed]

P. A. Champert, V. Couderc, L. Grossard, A. Barthélémy, C. Froehly, S. Février, P. Leproux, P. Roy, J. L. Auguste, L. Labonté, J. M. Blondy, D. Pagoux, P. Nérin, and D. Lefévre, “Broadband, single mode, visible continuum generation in normally dispersive fiber,” NLGW, Post deadline paper PD1, Toronto, Canada,28–31 (2004).

Cubeddu, R.

D’Andrea, C.

Dianov, E. M.

Dudley, J. M.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” El. Lett. 37, 558–560 (2001).
[CrossRef]

Eggleton, B. J.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” El. Lett. 37, 558–560 (2001).
[CrossRef]

Fan, T. Y.

T. Y. Fan and R. L. Byer, “Diode Laser-Pumped Solid-State Lasers,” IEEE J. Quantum Electron. 24, 895–912 (1998).
[CrossRef]

Février, S.

P. A. Champert, V. Couderc, L. Grossard, A. Barthélémy, C. Froehly, S. Février, P. Leproux, P. Roy, J. L. Auguste, L. Labonté, J. M. Blondy, D. Pagoux, P. Nérin, and D. Lefévre, “Broadband, single mode, visible continuum generation in normally dispersive fiber,” NLGW, Post deadline paper PD1, Toronto, Canada,28–31 (2004).

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, and C. Froehly, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004).
[CrossRef] [PubMed]

François, P. L.

Froehly, C.

P. A. Champert, V. Couderc, L. Grossard, A. Barthélémy, C. Froehly, S. Février, P. Leproux, P. Roy, J. L. Auguste, L. Labonté, J. M. Blondy, D. Pagoux, P. Nérin, and D. Lefévre, “Broadband, single mode, visible continuum generation in normally dispersive fiber,” NLGW, Post deadline paper PD1, Toronto, Canada,28–31 (2004).

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, and C. Froehly, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004).
[CrossRef] [PubMed]

Fujimoto, J. G.

Genty, G.

Ghanta, R. K.

Golovchenko, E. A.

González-Herráez, M.

Gordon, J. P.

Grossard, L.

P. A. Champert, V. Couderc, L. Grossard, A. Barthélémy, C. Froehly, S. Février, P. Leproux, P. Roy, J. L. Auguste, L. Labonté, J. M. Blondy, D. Pagoux, P. Nérin, and D. Lefévre, “Broadband, single mode, visible continuum generation in normally dispersive fiber,” NLGW, Post deadline paper PD1, Toronto, Canada,28–31 (2004).

Grossard, N.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” El. Lett. 37, 558–560 (2001).
[CrossRef]

Hansen, K. P.

S.C. Buchter, M. Kaivola, H. Ludvigsen, and K. P. Hansen, “Miniature supercontinuum laser sources,” CLEO ’04 Technical Digest, Paper CTuP58 (2004).

Hartl, I.

Headley, C.

A. K. Abeeluck and C. Headley, “Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation,”  30, 61–63 (2005).

Islam, M. N.

Joly, N.

Kaivola, M.

S.C. Buchter, M. Kaivola, H. Ludvigsen, and K. P. Hansen, “Miniature supercontinuum laser sources,” CLEO ’04 Technical Digest, Paper CTuP58 (2004).

Kalkbrenner, T.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and Spectroscopy of Gold Nanoparticles Using Supercontinuum White Light Confocal Microscopy,” Phys. Rev. Lett. 93, 037401, (2004).
[CrossRef] [PubMed]

Knight, J. C.

Ko, T. H.

Labonté, L.

P. A. Champert, V. Couderc, L. Grossard, A. Barthélémy, C. Froehly, S. Février, P. Leproux, P. Roy, J. L. Auguste, L. Labonté, J. M. Blondy, D. Pagoux, P. Nérin, and D. Lefévre, “Broadband, single mode, visible continuum generation in normally dispersive fiber,” NLGW, Post deadline paper PD1, Toronto, Canada,28–31 (2004).

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, and C. Froehly, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004).
[CrossRef] [PubMed]

Lefévre, D.

P. A. Champert, V. Couderc, L. Grossard, A. Barthélémy, C. Froehly, S. Février, P. Leproux, P. Roy, J. L. Auguste, L. Labonté, J. M. Blondy, D. Pagoux, P. Nérin, and D. Lefévre, “Broadband, single mode, visible continuum generation in normally dispersive fiber,” NLGW, Post deadline paper PD1, Toronto, Canada,28–31 (2004).

Lehtonen, M.

Leon-Saval, S. G.

Leproux, P.

P. A. Champert, V. Couderc, L. Grossard, A. Barthélémy, C. Froehly, S. Février, P. Leproux, P. Roy, J. L. Auguste, L. Labonté, J. M. Blondy, D. Pagoux, P. Nérin, and D. Lefévre, “Broadband, single mode, visible continuum generation in normally dispersive fiber,” NLGW, Post deadline paper PD1, Toronto, Canada,28–31 (2004).

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, and C. Froehly, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004).
[CrossRef] [PubMed]

Li, P.

Li, X. D.

Limbert, J.

Lindfors, K.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and Spectroscopy of Gold Nanoparticles Using Supercontinuum White Light Confocal Microscopy,” Phys. Rev. Lett. 93, 037401, (2004).
[CrossRef] [PubMed]

Liu, Z.

Ludvigsen, H.

Maillotte, H.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanoseconnd microchip laser,” Opt. Lett. 28, 1820–1822 (2003).
[CrossRef] [PubMed]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” El. Lett. 37, 558–560 (2001).
[CrossRef]

Mamyshev, P. V.

Martin-Lopez, S.

Mason, M. W.

Mussot, A.

Nérin, P.

P. A. Champert, V. Couderc, L. Grossard, A. Barthélémy, C. Froehly, S. Février, P. Leproux, P. Roy, J. L. Auguste, L. Labonté, J. M. Blondy, D. Pagoux, P. Nérin, and D. Lefévre, “Broadband, single mode, visible continuum generation in normally dispersive fiber,” NLGW, Post deadline paper PD1, Toronto, Canada,28–31 (2004).

Pagoux, D.

P. A. Champert, V. Couderc, L. Grossard, A. Barthélémy, C. Froehly, S. Février, P. Leproux, P. Roy, J. L. Auguste, L. Labonté, J. M. Blondy, D. Pagoux, P. Nérin, and D. Lefévre, “Broadband, single mode, visible continuum generation in normally dispersive fiber,” NLGW, Post deadline paper PD1, Toronto, Canada,28–31 (2004).

Pifferi, A.

Pilipetski, A. N.

Provino, L.

A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, “Generation of broadband single-mode supercontinuum in a conventional dispersion-shifted fiber by use of a subnanoseconnd microchip laser,” Opt. Lett. 28, 1820–1822 (2003).
[CrossRef] [PubMed]

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” El. Lett. 37, 558–560 (2001).
[CrossRef]

Ranka, J. K.

Roy, P.

P. A. Champert, V. Couderc, L. Grossard, A. Barthélémy, C. Froehly, S. Février, P. Leproux, P. Roy, J. L. Auguste, L. Labonté, J. M. Blondy, D. Pagoux, P. Nérin, and D. Lefévre, “Broadband, single mode, visible continuum generation in normally dispersive fiber,” NLGW, Post deadline paper PD1, Toronto, Canada,28–31 (2004).

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, and C. Froehly, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004).
[CrossRef] [PubMed]

Russell, P. St. J.

Sandoghdar, V.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and Spectroscopy of Gold Nanoparticles Using Supercontinuum White Light Confocal Microscopy,” Phys. Rev. Lett. 93, 037401, (2004).
[CrossRef] [PubMed]

Schimpf, D.

Schreiber, T.

Shi, K.

Stoller, P.

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and Spectroscopy of Gold Nanoparticles Using Supercontinuum White Light Confocal Microscopy,” Phys. Rev. Lett. 93, 037401, (2004).
[CrossRef] [PubMed]

Sucha, G.

Swartling, J.

Sylvestre, T.

Tombelaine, V.

Torricelli, A.

Tünnermann, A.

Vanholsbeeck, F.

Wadsworth, W. J.

Wegener, M.

Windeler, R. S.

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” El. Lett. 37, 558–560 (2001).
[CrossRef]

Windeler, S.

Wood, D.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

Yin, S.

Zayhowski, J. J.

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications”, J. Alloys Compd. 303, 393–400 (2000).
[CrossRef]

J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11, 255–267 (1999).
[CrossRef]

Appl. Opt. (1)

El. Lett. (1)

L. Provino, J. M. Dudley, H. Maillotte, N. Grossard, R. S. Windeler, and B. J. Eggleton, “Compact broadband continuum source based on a microchip laser pumped microstructured fiber,” El. Lett. 37, 558–560 (2001).
[CrossRef]

IEEE J. Quantum Electron. (2)

T. Y. Fan and R. L. Byer, “Diode Laser-Pumped Solid-State Lasers,” IEEE J. Quantum Electron. 24, 895–912 (1998).
[CrossRef]

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 25, 2665–2673 (1989).
[CrossRef]

J. Alloys Compd. (1)

J. J. Zayhowski, “Passively Q-switched Nd:YAG microchip lasers and applications”, J. Alloys Compd. 303, 393–400 (2000).
[CrossRef]

J. Opt. Soc. Am. B (3)

NLGW, Post deadline paper PD1, Toronto, Canada, (1)

P. A. Champert, V. Couderc, L. Grossard, A. Barthélémy, C. Froehly, S. Février, P. Leproux, P. Roy, J. L. Auguste, L. Labonté, J. M. Blondy, D. Pagoux, P. Nérin, and D. Lefévre, “Broadband, single mode, visible continuum generation in normally dispersive fiber,” NLGW, Post deadline paper PD1, Toronto, Canada,28–31 (2004).

Opt. Express (7)

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12, 299–309 (2004).
[CrossRef] [PubMed]

K. Shi, P. Li, S. Yin, and Z. Liu, “Chromatic Confocal Microscopy using supercontinuum light,” Opt. Express 12, 2096–2101 (2004).
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, ”Supercontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004).
[CrossRef] [PubMed]

P. A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, and C. Froehly, “White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system,” Opt. Express 12, 4366–4371 (2004).
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructures fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004).
[CrossRef] [PubMed]

F. Vanholsbeeck, S. Martin-Lopez, M. González-Herráez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13, 6615–6625 (2005).
[CrossRef] [PubMed]

T. Schreiber, T. V. Andersen, D. Schimpf, J. Limbert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13, 9556–9569 (2005).
[CrossRef] [PubMed]

Opt. Lett. (3)

Opt. Mater. (1)

J. J. Zayhowski, “Microchip lasers,” Opt. Mater. 11, 255–267 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

K. Lindfors, T. Kalkbrenner, P. Stoller, and V. Sandoghdar, “Detection and Spectroscopy of Gold Nanoparticles Using Supercontinuum White Light Confocal Microscopy,” Phys. Rev. Lett. 93, 037401, (2004).
[CrossRef] [PubMed]

Other (5)

A. K. Abeeluck and C. Headley, “Continuous-wave pumping in the anomalous- and normal-dispersion regimes of nonlinear fibers for supercontinuum generation,”  30, 61–63 (2005).

http://www.crystal-fibre.com/support/Supercontinuum - SC-5.0-1040.pdf

S.C. Buchter, M. Kaivola, H. Ludvigsen, and K. P. Hansen, “Miniature supercontinuum laser sources,” CLEO ’04 Technical Digest, Paper CTuP58 (2004).

www.rsoftdesign.com

G. P. Agrawal, “Nonlinear fiber optics” ( Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Calculated group-delay (a) and group-delay matching (b) for the PCF-I (black) and PCF-II (red) fibers.

Fig. 2.
Fig. 2.

Experimental spectra of the evolution of the visible and infrared continua in 2-meters of PCF-I fiber with 1064/532 nm dual-wavelength pumping. The input peak power was increased in order to qualitatively demonstrate the evolution of the continua. The maximum peak power in sub-figure (h) is 350 W at 1064 nm and 50 W at 532 nm.

Fig. 3.
Fig. 3.

Experimental spectra of the evolution of the visible continuum in 2-meters of the PCF-I fiber with 1064/532 nm dual-wavelength pumping. The input peak power was increased in order to qualitatively demonstrate the evolution of the continuum. The maximum peak power in sub-figure (h) is 350 W at 1064 nm and 50 W at 532 nm.

Fig. 4.
Fig. 4.

Experimental spectra of the evolution of the visible and infrared continua in PCF-I fiber with 1064/532 nm dual-wavelength pumping. The subfigures correspond to propagations lengths from 60 cm to 180 cm. The peak power coupled into the fiber is 350 W at 1064 nm and 50 W at 532 nm in all the spectra.

Fig. 5.
Fig. 5.

Simulated spectral evolution of the 1064/532 nm dual-wavelength pumped continuum generation in PCF-I as a function of propagation distance. The peak power in the fiber is 350 W at 1064 nm and 50 W at 532 nm in all the spectra.

Fig. 6.
Fig. 6.

Simulated time evolution of the 1064 nm (a) and 532 nm (b) pump pulses in PCF-I as a function of propagation distance.

Fig. 7.
Fig. 7.

Visible continua generated in PCF-I (black) and PCF-II (red) fibers using 532/1064 nm (a) and 473/946 nm (b) dual-wavelength pumping.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A 1 z i k 1 i k k ! β k 1 k A 1 T k = 1 ( 1 + i ω 1 T ) A 1 R ( T ) [ A 1 z T T 2 + 2 A 2 ( z , T T ) 2 ] dT
A 2 z i k 1 i k k ! β k 2 k A 2 T k = 2 ( 1 + i ω 2 T ) A 2 R ( T ) [ A 2 z T T 2 + 2 A 1 ( z , T T ) 2 ] dT

Metrics