Abstract

We propose a novel all-optical tunable delay line based on soliton self-frequency shift and filtering broadened spectrum due to self-phase modulation to compensate for the frequency shift. We experimentally demonstrate the proposed all-optical tunable delay line and achieve a continuous temporal shift up to 19.2 ps for 0.5 ps pulse, corresponding to a delay-to-pulse-width ratio of 38.4.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kitayama, N. Wada, and H. Sotobayashi, "Architectural considerations for photonic IP router based upon optical code correlation," J. Lightwave Technol. 18,1834-1844 (2000).
    [CrossRef]
  2. K. Inoue and H. Toba, "Wavelength conversion experiment using fiber four-wave mixing," IEEE Photon. Technol. Lett. 4, 69-71 (1992).
    [CrossRef]
  3. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proceedings of the European Conference on Optical Communication (ECOC) (IEEE, 1998) pp. 475-476.
  4. K. Y. Song, M. G. Herraez, and L. Thevenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13, 82-88 (2005).
    [CrossRef] [PubMed]
  5. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13, 6092-6098 (2005).
    [CrossRef] [PubMed]
  6. D. Dahan and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering," Opt. Express 13, 6234-6249 (2005).
    [CrossRef] [PubMed]
  7. J. E. Sharping, Y. Okawachi, J. van Howe, C. Xu, Y. Wang, A. E. Willner, and A. L. Gaeta, "All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion," Opt. Express 13, 7872-7877 (2005).
    [CrossRef] [PubMed]
  8. J. van Howe and C. Xu, "Ultrafast optical delay line using soliton propagation between a time-prism pair," Opt. Express 13, 1138-1143 (2005).
    [CrossRef] [PubMed]
  9. A. Hasegawa and Y. Kodama, "Solitons in optical communications," (Oxford University Press, Oxford, 1995), Chap. 5.
  10. F. M. Mitschke and L. F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11, 659-661 (1986).
    [CrossRef] [PubMed]
  11. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986).
    [CrossRef] [PubMed]
  12. V. E. Zakharov and A. B. Shabat, "Exact theory of two-dimensional self focusing and one-dimensional selfmodulation of waves in nonlinear media," Sov. Phys. JETP 34, 62-69 (1972).
  13. K. Tai, A. Hasegawa, and N. Bekki, "Fission of optical solitons induced by stimulated Raman effect," Opt. Lett. 13, 392-394 (1988).
    [CrossRef] [PubMed]
  14. K. J. Blow, N. J. Doran, B. K. Nayar, and B. P. Nelson, "Two-wavelength operation of the nonlinear optical loop mirror," Opt. Lett. 15, 248-250 (1990).
    [CrossRef] [PubMed]

2005

2000

1992

K. Inoue and H. Toba, "Wavelength conversion experiment using fiber four-wave mixing," IEEE Photon. Technol. Lett. 4, 69-71 (1992).
[CrossRef]

1990

1988

1986

1972

V. E. Zakharov and A. B. Shabat, "Exact theory of two-dimensional self focusing and one-dimensional selfmodulation of waves in nonlinear media," Sov. Phys. JETP 34, 62-69 (1972).

Bekki, N.

Blow, K. J.

Dahan, D.

Doran, N. J.

Eisenstein, G.

Gaeta, A. L.

Gordon, J. P.

Hasegawa, A.

Herraez, M. G.

Inoue, K.

K. Inoue and H. Toba, "Wavelength conversion experiment using fiber four-wave mixing," IEEE Photon. Technol. Lett. 4, 69-71 (1992).
[CrossRef]

Kitayama, K.

Mitschke, F. M.

Mollenauer, L. F.

Nayar, B. K.

Nelson, B. P.

Okawachi, Y.

Shabat, A. B.

V. E. Zakharov and A. B. Shabat, "Exact theory of two-dimensional self focusing and one-dimensional selfmodulation of waves in nonlinear media," Sov. Phys. JETP 34, 62-69 (1972).

Sharping, J. E.

Song, K. Y.

Sotobayashi, H.

Tai, K.

Thevenaz, L.

Toba, H.

K. Inoue and H. Toba, "Wavelength conversion experiment using fiber four-wave mixing," IEEE Photon. Technol. Lett. 4, 69-71 (1992).
[CrossRef]

van Howe, J.

Wada, N.

Wang, Y.

Willner, A. E.

Xu, C.

Zakharov, V. E.

V. E. Zakharov and A. B. Shabat, "Exact theory of two-dimensional self focusing and one-dimensional selfmodulation of waves in nonlinear media," Sov. Phys. JETP 34, 62-69 (1972).

IEEE Photon. Technol. Lett.

K. Inoue and H. Toba, "Wavelength conversion experiment using fiber four-wave mixing," IEEE Photon. Technol. Lett. 4, 69-71 (1992).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Sov. Phys. JETP

V. E. Zakharov and A. B. Shabat, "Exact theory of two-dimensional self focusing and one-dimensional selfmodulation of waves in nonlinear media," Sov. Phys. JETP 34, 62-69 (1972).

Other

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proceedings of the European Conference on Optical Communication (ECOC) (IEEE, 1998) pp. 475-476.

A. Hasegawa and Y. Kodama, "Solitons in optical communications," (Oxford University Press, Oxford, 1995), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic diagram of the proposed all-optical TDL.

Fig. 2.
Fig. 2.

Experimental setup for all-optical TDL.

Fig. 3.
Fig. 3.

Experimentally observed spectra at the output of HNLF1 and 2.

Fig. 4.
Fig. 4.

Central wavelength versus input peak power.

Fig. 5.
Fig. 5.

Experimentally observed waveforms and spectra at the output of OBPF.

Fig. 6.
Fig. 6.

Experimentally measured temporal shift versus input peak power.

Fig. 7.
Fig. 7.

Experimentally measured pulse width and average power at the output of OBPF.

Tables (1)

Tables Icon

Table 1. Parameters of HNLFs @1550 nm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

i E z β 2 2 2 E t 2 + γ E 2 E = i g E + i β 3 6 3 E t 3 + γ T R E E 2 t .
q = E [ mW ] P 0 [ mW ] , T = 1.763 t [ ps ] t s [ ps ] , Z = z [ km ] z d [ km ] ,
i q Z + 1 2 2 q T 2 + q 2 q = τ R q q 2 T ,
{ P 0 = 262.5 ( λ [ μ m ] ) 3 D [ ps nm km ] n 2 A eff [ × 10 9 W ] ( t s [ ps ] ) 2 , z d = 0.6062 ( t s [ ps ] ) 2 ( λ [ μ m ] ) 2 D [ ps nm km ] , τ R = 1.763 T R [ ps ] t s [ ps ] .
q ( Z , T ) = η ( Z ) sech [ η ( Z ) { T T 0 ( Z ) } ] exp { i κ ( Z ) T + i θ ( Z ) } ,
d η d Z = 0 , d κ d Z = 8 15 τ R η 4 , d T 0 d Z = κ .
η ( Z ) = η 0 , κ ( Z ) = 8 15 τ R η 0 4 Z , T 0 ( Z ) = 4 15 τ R η 0 4 Z 2 ,
q ( Z = 0 , T ) = A sech ( T ) .
η = 2 A 1 , ( 0.5 A < 1.5 ) .

Metrics