Abstract

It was recently reported that bioluminescent spectra can be significantly affected by temperature, which we recognize as a major opportunity to overcome the inherent illposedness of bioluminescence tomography (BLT). In this paper, we propose temperature-modulated bioluminescence tomography (TBT) to utilize the temperature dependence of bioluminescence for superior BLT performance. Specifically, we employ a focused ultrasound array to heat small volumes of interest (VOI) one at a time, and induce a detectable change in the optical signal on the body surface of a mouse. Based on this type of information, the BLT reconstruction can be stabilized and improved. Our numerical experiments clearly demonstrate the merits of our TBT with either noise-free or noisy datasets. Also, this idea is applicable in 2D bioluminescence imaging and computational optical biopsy (COB). We believe that our approach and technology represents a major step forward in the field of BLT, and has an important and immediate applicability in bioluminescence imaging of small animals in general.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Zerhouni, "Medicine. The NIH Roadmap," Science 302(5642), 63-72 (2003).
    [CrossRef] [PubMed]
  2. R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
    [CrossRef] [PubMed]
  3. F. Jaffer and R. Weissleder, "Molecular imaging in the clinical arena," Jama. pp. 855-62 (2005).
    [CrossRef] [PubMed]
  4. M. Thakur and B. Lentle, "Report of a summit on molecular imaging," AJR Am. J. Roentgenol 186, 297-9.
    [PubMed]
  5. V. Ntziachristos, J. Ripoll, L. Wang, and R. Weissleder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
    [CrossRef] [PubMed]
  6. G. Wang, E. Hoffman, G. McLennan, L. Wang, M. Suter, and J. Meinel, "Development of the first bioluminescent CT scanner," Radiology 229, 566 (2003).
  7. G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289- 2299 (2004).
    [CrossRef] [PubMed]
  8. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, "Practical Reconstruction Method for Bioluminescence Tomography," Opt. Express 13, 6756-6771 (2005).
    [CrossRef] [PubMed]
  9. M. Jiang and G. Wang, "Image reconstruction for bioluminescence tomography," Proc. SPIE 5535, 335-351 (2004).
    [CrossRef]
  10. W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004).
    [CrossRef]
  11. W. Cong and G. Wang, "Boundary integral method for bioluminescence tomography," J. Biomed. Opt. p. 020503 (2006).
    [CrossRef] [PubMed]
  12. W. Cong, D. Kumar, L. Wang, and G. Wang, "A Born-type approximation method for bioluminescence tomography," Med. Phys pp. 679-686 (2006).
    [CrossRef] [PubMed]
  13. A. Cong and G. Wang, "Multi-spectral bioluminescence tomography: Methodology and simulation," Int’l J. of Biomed. Imaging pp. 1-7 (2006).
    [CrossRef]
  14. X. Gu, Q. Zhang, L. Larcom, and H. Jiang, "Three-dimensional bioluminescence tomography with model based reconstruction," Opt. Express 12, 3996-4000 (2004).
    [CrossRef] [PubMed]
  15. C. Kuo, O. Coquoz, T. Troy, D. Zwarg, and B. Rice, "Bioluminescent tomography for in vivo localization and quantification of luminescent sources from a multiple-view imaging system," Mol. Imaging 4, 370 (2005).
  16. G. Alexandrakis, F. Rannou, and A. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol 50, 4225-4241 (2005).
    [CrossRef] [PubMed]
  17. A. Chaudhari, F. Darvas, J. Bading, R. Moats, P. Conti,  and et al, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
    [CrossRef] [PubMed]
  18. N. Slavine, M. Lewis, E. Richer, and P. Antich, "Iterative reconstruction method for light emitting sources based on the diffusion equation," Med. Phys. 33, 61-69 (2006).
    [CrossRef] [PubMed]
  19. H. Dehghani, S. Davis, S. Jiang, B. Pogue, K. Paulsen, and M. Patterson, "Spectrally-resolved bioluminescence optical tomography," Opt. lett. 31, 365-367 (2006).
    [CrossRef] [PubMed]
  20. H. Zhao, T. Doyle, O. Coquoz, F. Kalish, B. Rice, and C. Contag, "Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo," J. Biomed. Opt. 10(4), 041,210 (2005).
    [CrossRef]
  21. H. Zhao, T. Doyle, O. Coquoz, F. Kalish, B. Rice, and C. Contag, "Spectral characterization of Firefly-, Click Beetle- and Renilla- luciferase in mammalian cells and living mice," inMol. Imaging 3(3) (2004).
  22. G. Wang, H. Shen, W. Cong, S. Zhao, and G. Wei, "Temperature-modulated bioluminescence tomography," Patent disclosure filed with the University of Iowa Research Foundation. University of Iowa (2006).
  23. R. Apfel and C. Holland, "Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound," Ultrasound Med. Biol. 17, 179-85 (1991).
    [CrossRef] [PubMed]
  24. C. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, Oxford, 1995).
  25. J. Kennedy, G. ter Haar, and D. Cranston, "High intensity focused ultrasound: surgery of the future," Br. J. of Radiol. 76, 590-599 (2003).
    [CrossRef]
  26. R. Held, V. Zderic, T. Nguyen, and S. Vaezy, "Annular phased-array high intensity focused device for imageguided therapy of uterine fibroids," IEEE T. Ultrasound Freq. Contr. 53, 335-348 (2006).
    [CrossRef]
  27. G. Wei, "Vibration analysis by discrete singular convolution," J. Sound Vibration 244, 535-553 (2001).
    [CrossRef]
  28. G. Wei, Y. Zhao, and Y. Xiang, "iscrete singular convolution and its application to the analysis of plates with internal supports. I Theory and algorithm," Int. J. Numer. Methods Engng. 55, 913-946 (2002).
    [CrossRef]
  29. J. Lynn, R. Zwemer, A. Chick, and A. Miller, "A new method for the generation and use of focused ultrasound in experimental biology," J. Gen. Physiol. 26, 179-193 (1942).
    [CrossRef] [PubMed]
  30. W. Fry, J. B. F. Fry, R. Krumins, and J. Brennan, "Ultrasonic lesions in the mammalian central nervous system," Science 122, 517-518 (1955).
    [CrossRef] [PubMed]
  31. R. Warwick and J. Pond, "Trackless lesions in nervous tissues produced by HIFU (high-intensity mechanical waves)," J. Anat. 102, 387-405 (1968).
    [PubMed]
  32. P. Lele, "Concurrent detection of the production of ultrasonic lesions," Med. Biol. Engng. 4, 451-456 (1996).
    [CrossRef]
  33. K. Taylor and C. Connolly, "Differing hepatic lesions caused by the same dose of ultrasound," J. Pathol. 98, 291-293 (1969).
    [CrossRef] [PubMed]
  34. L. Frizzell, "Threshold dosages for damage to mammalian liver by high-intensity focused ultrasound," IEEE T. Ultrason. Ferroelectr. Freq. Contral (1998).
  35. A. Williams, Ultrasound: Biological effects and potential hazards (Medical Physics Series 1983, Academic Press, London, 1983).
  36. G. T. Haar, R. Clarke,M. Vaughan, and C. Hill, "Trackless surgery using focused ultrasound: Technique and case report," Min. Inv. Ther. 1, 13-15 (1991).
    [CrossRef]
  37. M. Denbow, I. Rivens, I. Rowland, M. Leach, N. Fisk, and G. ter Haar, "Preclinical development of non-invasive vascular occlusion with focused ultrasonic surgery for fetal therapy," Am. J. Obstet. Gynecol. 182, 387-392 (2000).
    [CrossRef] [PubMed]
  38. M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, "Physical Mechanisms of the Therapeutic Effect of Ultrasound (A Review)," Acoustical Physics,  49, 369-388 (2003).
    [CrossRef]
  39. S. Hobbs, W. Monsky, F. Yuan, W. Roberts, L. Griffith, V. Torchilin, and R. Jain, "Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment," Proc. Natl. Acad. Sci. USA 95, 4607-4612 (1998).
    [CrossRef] [PubMed]
  40. X. Lu, E. Burdette, and G. Svensson, "Ultrasound field calculation in a water-soft tissue medium," Int. J. Hyperthermia 14, 169-182 (1998).
    [CrossRef] [PubMed]
  41. K. Ju, L. Tseng, Y. Chen, and W. Lin, "Investigation of a scanned cylindrical ultrasound system for breast hyperthermia," Phys. Med. Biol. 51, 539-555 (2006).
    [CrossRef] [PubMed]
  42. A. Singh, E. Moros, P. Novak, W. S. W, A. Zeug, J. Locke, and R. Myerson, "MicroPET-compatible, small animal hyperthermia ultrasound system (SAHUS) for sustainable, collimated and controlled hyperthermia of subcutaneously implanted tumours," Int. J. Hyperthermia 20, 32-44 (2004).
    [CrossRef]
  43. J. Locke, A. Z. D. T. Jr., J. Allan, K. Mazzarella, P. Novak, D. Hanson, A. Singh, E. Moros, and T. Pandita, "Localized versus regional hyperthermia: comparison of xenotransplants treated with a small animal ultrasound and waterbath limb immersion," Int. J. Hyperthermia 21, 271-281 (2005).
    [CrossRef] [PubMed]
  44. P. Novak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a Small Animal Hyperthermia Ultrasound System (SAHUS): Report on 83 Tumors," Phys. Med. Biol. 50, 5127-5139 (2005).
    [CrossRef] [PubMed]
  45. P. Vovak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours," Phys. Med. Biol. 50, 5127-5139 (2005).
    [CrossRef]
  46. E. Steiger and S. Ginter, "Numerical simulation of ultrasonic shock wave propagation in lossy liquids obeying a frequency power law," J. Acoust. Soc. Am. 105, 1231 (1999).
    [CrossRef]
  47. A. Nachman, J. Smith, and R. Wang, "An equation for acoustic propagation in inhomogeneous media with relaxation losses," J. Acoust. Soc. Am. 88, 1584-1595 (1990).
    [CrossRef]
  48. R. Cleveland, M. Hamilton, and D. Blackstock, "Time-domain modeling of finite-amplitude sound beams in relaxing fluids," J. Acoust. Soc. Am. 99, 3312-3318 (1996).
    [CrossRef]
  49. X. Yuan, D. Borup, and J. Wiskin, "Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition," IEEE T. Ultrason. Ferroelectr. Freq. Control 46, 14-23 (1999).
    [CrossRef]
  50. J. Tavakkoli, D. Cathignol, and R. Souchon, "Modeling of pulsed finite-amplitude focused sound beams in time domain," J. Acoust. Soc. Am. 104, 2061-2072 (1998).
    [CrossRef]
  51. R. Zemp, J. Tavakkoli, and R. C. Cobbold, "Modeling of nonlinear ultrasound propagation in tissue from array transducers," J. Acoust. Soc. Am. 113, 139-152 (2003).
    [CrossRef] [PubMed]
  52. T. Szabo, "Time domain wave equation for lossy media obeying a frequency power law," J. Acoust. Soc. Am. 96, 491-500 (1994)).
    [CrossRef]
  53. <jrn>. W. Chen and S. Holm, "Modified Szabo wave equation models for lossy media obeying frequency power law," J. Acoust. Soc. Am. (2003).</jrn>
    [CrossRef] [PubMed]
  54. G. Norton and J. Novarini, "Including dispersion and attenuation in the time domain for wave propagation in isotropic media," J. Acoust. Soc. Am. 113, 3024-3031 (2003).
    [CrossRef] [PubMed]
  55. M. Wismer and R. Ludwig, "An explicit numerical time domain formulation to simulate pulsed pressure waves in viscous fluids exhibiting arbitrary frequency power law attenuation," IEEE T. Ultrason. Ferroelectr. Freq. Control 42, 1040-1049 (1995).
    [CrossRef]
  56. A. Peplow, "Numerical predictions of sound propagation from a cutting over a road-side noise barrier," J. Comput. Acoust. 13, 145-162 (2005).
    [CrossRef]
  57. S. Ginter, M. Liebler, E. Steiger, T. Dreyer, and R. Riedlinger, "Full wave modeling of therapeutic ultrasound: Nonlinear ultrasound propagation in ideal fluids," J. Acoust. Soc. Am. 111, 2049-2059 (2002).
    [CrossRef] [PubMed]
  58. M. Liebler, S. Ginter, T. Dreyer, and R. Riedlinger, "Simulation of enhanced absorption in ultrasound thermotherapy due to nonlinear effects," J. Acoust. Soc. Am. 109, 2458 (2001).
  59. R. McGough, T. Samulski, and J. Kelly, "An efficient grid sectoring method for calculations of the near-field pressure generated by a circular piston," J. Acoust. Soc. Amer. 115, 1942-1954 (2004).
    [CrossRef]
  60. R. McGough, M. Kessler, E. Ebbini, and C. Cain, "Treatment planning for hyperthermia with ultrasound phased arrays," IEEE T. Ultras. Ferroel. Freq. Control 43, 1074-1084 (1996).
    [CrossRef]
  61. K. Ocheltree and L. Frizzell, "Sound field calculation for rectangular sources," IEEE T. Ultrason. Ferroel. Freq. Control 36, 242-247 (1989).
    [CrossRef]
  62. R. McGough, D. Ciondric, and T. Samulski, "Shape calibration of a conformal ultrasound therapy array," IEEE T. Ultras. Ferroel. Freq. Control 48, 494-505 (2001).
    [CrossRef]
  63. C. Church, "The effects of an elastic solid-surface layer on the radial pulsations of gas-bubbles," J. Acoust. Soc. Am. (97).
    [PubMed]
  64. H. Pennes, "nalysis of tissue and arterial blood temperatures in the resting human forearm," J. Appl. Physiol. 1, 19-122 (1948).
  65. D. Arora, D. Cooley, T. Perry, M. Skliar, and R. Roemer, "Direct thermal dose control of constrained focused ultrasound treatments: phantom and in vivo evaluation," Phys. Med. Biol. 50, 1919-1935 (2005).
    [CrossRef] [PubMed]
  66. V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo." Nat. Med. 8, 757-760 (2002).
    [CrossRef] [PubMed]
  67. F. Foster and J. Hunt, "Transmission of ultrasound beams through human tissue-focusing and attenuation studies," Ultrasound Med. Biol. 5, 257-268 (1979).
    [CrossRef] [PubMed]
  68. H. Bowman, Thermodynamics of tissue heating: modeling and measurements for temperature distributions Physics Aspect of Hyperthermia ed G H Nussbaum (American Institute of Physics, New York 511-48, 1982).
  69. V. Tuchin., Tissue Optics: Light scattering methods and Instruments for medical Diagnosis (SPIE, Bellingham, WA, 2000).
  70. W. Cheong, S. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quant. Electr. 26, 2166-2184 (1990).
    [CrossRef]
  71. A. Welch and M. van Gemert, Optical Thermal Response of Laser-Irradiated Tissue (Plenum Press, New York, 1995).
  72. L. Shepp and Y. Vardi, "Maximum Likelihood Reconstruction for Emission Tomography," IEEE T. Med. Img. MI-1, 113-122 (1982).
    [CrossRef]
  73. G. Wang, Y. Li, and M. Jiang, "Computational optical biopsy methods, techniques and apparatus," Patent disclosure filed with Univ. of Iowa Research Foundation in Dec. 2003; provisional patent filed in 2004.
  74. Y. Li, M. Jiang, and G. Wang, "Computational optical biopsy," Biomed. Eng. Online pp. 4-36 (2005).

2006 (6)

R. Held, V. Zderic, T. Nguyen, and S. Vaezy, "Annular phased-array high intensity focused device for imageguided therapy of uterine fibroids," IEEE T. Ultrasound Freq. Contr. 53, 335-348 (2006).
[CrossRef]

K. Ju, L. Tseng, Y. Chen, and W. Lin, "Investigation of a scanned cylindrical ultrasound system for breast hyperthermia," Phys. Med. Biol. 51, 539-555 (2006).
[CrossRef] [PubMed]

W. Cong and G. Wang, "Boundary integral method for bioluminescence tomography," J. Biomed. Opt. p. 020503 (2006).
[CrossRef] [PubMed]

W. Cong, D. Kumar, L. Wang, and G. Wang, "A Born-type approximation method for bioluminescence tomography," Med. Phys pp. 679-686 (2006).
[CrossRef] [PubMed]

N. Slavine, M. Lewis, E. Richer, and P. Antich, "Iterative reconstruction method for light emitting sources based on the diffusion equation," Med. Phys. 33, 61-69 (2006).
[CrossRef] [PubMed]

H. Dehghani, S. Davis, S. Jiang, B. Pogue, K. Paulsen, and M. Patterson, "Spectrally-resolved bioluminescence optical tomography," Opt. lett. 31, 365-367 (2006).
[CrossRef] [PubMed]

2005 (12)

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, "Practical Reconstruction Method for Bioluminescence Tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

C. Kuo, O. Coquoz, T. Troy, D. Zwarg, and B. Rice, "Bioluminescent tomography for in vivo localization and quantification of luminescent sources from a multiple-view imaging system," Mol. Imaging 4, 370 (2005).

G. Alexandrakis, F. Rannou, and A. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol 50, 4225-4241 (2005).
[CrossRef] [PubMed]

A. Chaudhari, F. Darvas, J. Bading, R. Moats, P. Conti,  and et al, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

F. Jaffer and R. Weissleder, "Molecular imaging in the clinical arena," Jama. pp. 855-62 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. Wang, and R. Weissleder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

D. Arora, D. Cooley, T. Perry, M. Skliar, and R. Roemer, "Direct thermal dose control of constrained focused ultrasound treatments: phantom and in vivo evaluation," Phys. Med. Biol. 50, 1919-1935 (2005).
[CrossRef] [PubMed]

Y. Li, M. Jiang, and G. Wang, "Computational optical biopsy," Biomed. Eng. Online pp. 4-36 (2005).

J. Locke, A. Z. D. T. Jr., J. Allan, K. Mazzarella, P. Novak, D. Hanson, A. Singh, E. Moros, and T. Pandita, "Localized versus regional hyperthermia: comparison of xenotransplants treated with a small animal ultrasound and waterbath limb immersion," Int. J. Hyperthermia 21, 271-281 (2005).
[CrossRef] [PubMed]

P. Novak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a Small Animal Hyperthermia Ultrasound System (SAHUS): Report on 83 Tumors," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef] [PubMed]

P. Vovak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef]

A. Peplow, "Numerical predictions of sound propagation from a cutting over a road-side noise barrier," J. Comput. Acoust. 13, 145-162 (2005).
[CrossRef]

2004 (7)

R. McGough, T. Samulski, and J. Kelly, "An efficient grid sectoring method for calculations of the near-field pressure generated by a circular piston," J. Acoust. Soc. Amer. 115, 1942-1954 (2004).
[CrossRef]

A. Singh, E. Moros, P. Novak, W. S. W, A. Zeug, J. Locke, and R. Myerson, "MicroPET-compatible, small animal hyperthermia ultrasound system (SAHUS) for sustainable, collimated and controlled hyperthermia of subcutaneously implanted tumours," Int. J. Hyperthermia 20, 32-44 (2004).
[CrossRef]

H. Zhao, T. Doyle, O. Coquoz, F. Kalish, B. Rice, and C. Contag, "Spectral characterization of Firefly-, Click Beetle- and Renilla- luciferase in mammalian cells and living mice," inMol. Imaging 3(3) (2004).

G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289- 2299 (2004).
[CrossRef] [PubMed]

M. Jiang and G. Wang, "Image reconstruction for bioluminescence tomography," Proc. SPIE 5535, 335-351 (2004).
[CrossRef]

W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004).
[CrossRef]

X. Gu, Q. Zhang, L. Larcom, and H. Jiang, "Three-dimensional bioluminescence tomography with model based reconstruction," Opt. Express 12, 3996-4000 (2004).
[CrossRef] [PubMed]

2003 (7)

G. Wang, E. Hoffman, G. McLennan, L. Wang, M. Suter, and J. Meinel, "Development of the first bioluminescent CT scanner," Radiology 229, 566 (2003).

E. Zerhouni, "Medicine. The NIH Roadmap," Science 302(5642), 63-72 (2003).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

J. Kennedy, G. ter Haar, and D. Cranston, "High intensity focused ultrasound: surgery of the future," Br. J. of Radiol. 76, 590-599 (2003).
[CrossRef]

M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, "Physical Mechanisms of the Therapeutic Effect of Ultrasound (A Review)," Acoustical Physics,  49, 369-388 (2003).
[CrossRef]

R. Zemp, J. Tavakkoli, and R. C. Cobbold, "Modeling of nonlinear ultrasound propagation in tissue from array transducers," J. Acoust. Soc. Am. 113, 139-152 (2003).
[CrossRef] [PubMed]

G. Norton and J. Novarini, "Including dispersion and attenuation in the time domain for wave propagation in isotropic media," J. Acoust. Soc. Am. 113, 3024-3031 (2003).
[CrossRef] [PubMed]

2002 (3)

S. Ginter, M. Liebler, E. Steiger, T. Dreyer, and R. Riedlinger, "Full wave modeling of therapeutic ultrasound: Nonlinear ultrasound propagation in ideal fluids," J. Acoust. Soc. Am. 111, 2049-2059 (2002).
[CrossRef] [PubMed]

G. Wei, Y. Zhao, and Y. Xiang, "iscrete singular convolution and its application to the analysis of plates with internal supports. I Theory and algorithm," Int. J. Numer. Methods Engng. 55, 913-946 (2002).
[CrossRef]

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo." Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

2001 (3)

R. McGough, D. Ciondric, and T. Samulski, "Shape calibration of a conformal ultrasound therapy array," IEEE T. Ultras. Ferroel. Freq. Control 48, 494-505 (2001).
[CrossRef]

G. Wei, "Vibration analysis by discrete singular convolution," J. Sound Vibration 244, 535-553 (2001).
[CrossRef]

M. Liebler, S. Ginter, T. Dreyer, and R. Riedlinger, "Simulation of enhanced absorption in ultrasound thermotherapy due to nonlinear effects," J. Acoust. Soc. Am. 109, 2458 (2001).

2000 (1)

M. Denbow, I. Rivens, I. Rowland, M. Leach, N. Fisk, and G. ter Haar, "Preclinical development of non-invasive vascular occlusion with focused ultrasonic surgery for fetal therapy," Am. J. Obstet. Gynecol. 182, 387-392 (2000).
[CrossRef] [PubMed]

1999 (2)

X. Yuan, D. Borup, and J. Wiskin, "Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition," IEEE T. Ultrason. Ferroelectr. Freq. Control 46, 14-23 (1999).
[CrossRef]

E. Steiger and S. Ginter, "Numerical simulation of ultrasonic shock wave propagation in lossy liquids obeying a frequency power law," J. Acoust. Soc. Am. 105, 1231 (1999).
[CrossRef]

1998 (3)

J. Tavakkoli, D. Cathignol, and R. Souchon, "Modeling of pulsed finite-amplitude focused sound beams in time domain," J. Acoust. Soc. Am. 104, 2061-2072 (1998).
[CrossRef]

S. Hobbs, W. Monsky, F. Yuan, W. Roberts, L. Griffith, V. Torchilin, and R. Jain, "Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment," Proc. Natl. Acad. Sci. USA 95, 4607-4612 (1998).
[CrossRef] [PubMed]

X. Lu, E. Burdette, and G. Svensson, "Ultrasound field calculation in a water-soft tissue medium," Int. J. Hyperthermia 14, 169-182 (1998).
[CrossRef] [PubMed]

1996 (3)

P. Lele, "Concurrent detection of the production of ultrasonic lesions," Med. Biol. Engng. 4, 451-456 (1996).
[CrossRef]

R. Cleveland, M. Hamilton, and D. Blackstock, "Time-domain modeling of finite-amplitude sound beams in relaxing fluids," J. Acoust. Soc. Am. 99, 3312-3318 (1996).
[CrossRef]

R. McGough, M. Kessler, E. Ebbini, and C. Cain, "Treatment planning for hyperthermia with ultrasound phased arrays," IEEE T. Ultras. Ferroel. Freq. Control 43, 1074-1084 (1996).
[CrossRef]

1995 (1)

M. Wismer and R. Ludwig, "An explicit numerical time domain formulation to simulate pulsed pressure waves in viscous fluids exhibiting arbitrary frequency power law attenuation," IEEE T. Ultrason. Ferroelectr. Freq. Control 42, 1040-1049 (1995).
[CrossRef]

1994 (1)

T. Szabo, "Time domain wave equation for lossy media obeying a frequency power law," J. Acoust. Soc. Am. 96, 491-500 (1994)).
[CrossRef]

1991 (2)

G. T. Haar, R. Clarke,M. Vaughan, and C. Hill, "Trackless surgery using focused ultrasound: Technique and case report," Min. Inv. Ther. 1, 13-15 (1991).
[CrossRef]

R. Apfel and C. Holland, "Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound," Ultrasound Med. Biol. 17, 179-85 (1991).
[CrossRef] [PubMed]

1990 (2)

A. Nachman, J. Smith, and R. Wang, "An equation for acoustic propagation in inhomogeneous media with relaxation losses," J. Acoust. Soc. Am. 88, 1584-1595 (1990).
[CrossRef]

W. Cheong, S. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quant. Electr. 26, 2166-2184 (1990).
[CrossRef]

1989 (1)

K. Ocheltree and L. Frizzell, "Sound field calculation for rectangular sources," IEEE T. Ultrason. Ferroel. Freq. Control 36, 242-247 (1989).
[CrossRef]

1982 (1)

L. Shepp and Y. Vardi, "Maximum Likelihood Reconstruction for Emission Tomography," IEEE T. Med. Img. MI-1, 113-122 (1982).
[CrossRef]

1979 (1)

F. Foster and J. Hunt, "Transmission of ultrasound beams through human tissue-focusing and attenuation studies," Ultrasound Med. Biol. 5, 257-268 (1979).
[CrossRef] [PubMed]

1969 (1)

K. Taylor and C. Connolly, "Differing hepatic lesions caused by the same dose of ultrasound," J. Pathol. 98, 291-293 (1969).
[CrossRef] [PubMed]

1968 (1)

R. Warwick and J. Pond, "Trackless lesions in nervous tissues produced by HIFU (high-intensity mechanical waves)," J. Anat. 102, 387-405 (1968).
[PubMed]

1955 (1)

W. Fry, J. B. F. Fry, R. Krumins, and J. Brennan, "Ultrasonic lesions in the mammalian central nervous system," Science 122, 517-518 (1955).
[CrossRef] [PubMed]

1948 (1)

H. Pennes, "nalysis of tissue and arterial blood temperatures in the resting human forearm," J. Appl. Physiol. 1, 19-122 (1948).

1942 (1)

J. Lynn, R. Zwemer, A. Chick, and A. Miller, "A new method for the generation and use of focused ultrasound in experimental biology," J. Gen. Physiol. 26, 179-193 (1942).
[CrossRef] [PubMed]

Alexandrakis, G.

G. Alexandrakis, F. Rannou, and A. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Antich, P.

N. Slavine, M. Lewis, E. Richer, and P. Antich, "Iterative reconstruction method for light emitting sources based on the diffusion equation," Med. Phys. 33, 61-69 (2006).
[CrossRef] [PubMed]

Apfel, R.

R. Apfel and C. Holland, "Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound," Ultrasound Med. Biol. 17, 179-85 (1991).
[CrossRef] [PubMed]

Arora, D.

D. Arora, D. Cooley, T. Perry, M. Skliar, and R. Roemer, "Direct thermal dose control of constrained focused ultrasound treatments: phantom and in vivo evaluation," Phys. Med. Biol. 50, 1919-1935 (2005).
[CrossRef] [PubMed]

Bading, J.

A. Chaudhari, F. Darvas, J. Bading, R. Moats, P. Conti,  and et al, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Bailey, M. R.

M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, "Physical Mechanisms of the Therapeutic Effect of Ultrasound (A Review)," Acoustical Physics,  49, 369-388 (2003).
[CrossRef]

Blackstock, D.

R. Cleveland, M. Hamilton, and D. Blackstock, "Time-domain modeling of finite-amplitude sound beams in relaxing fluids," J. Acoust. Soc. Am. 99, 3312-3318 (1996).
[CrossRef]

Borup, D.

X. Yuan, D. Borup, and J. Wiskin, "Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition," IEEE T. Ultrason. Ferroelectr. Freq. Control 46, 14-23 (1999).
[CrossRef]

Bremer, C.

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo." Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Brennan, J.

W. Fry, J. B. F. Fry, R. Krumins, and J. Brennan, "Ultrasonic lesions in the mammalian central nervous system," Science 122, 517-518 (1955).
[CrossRef] [PubMed]

Burdette, E.

X. Lu, E. Burdette, and G. Svensson, "Ultrasound field calculation in a water-soft tissue medium," Int. J. Hyperthermia 14, 169-182 (1998).
[CrossRef] [PubMed]

Cain, C.

R. McGough, M. Kessler, E. Ebbini, and C. Cain, "Treatment planning for hyperthermia with ultrasound phased arrays," IEEE T. Ultras. Ferroel. Freq. Control 43, 1074-1084 (1996).
[CrossRef]

Cathignol, D.

J. Tavakkoli, D. Cathignol, and R. Souchon, "Modeling of pulsed finite-amplitude focused sound beams in time domain," J. Acoust. Soc. Am. 104, 2061-2072 (1998).
[CrossRef]

Chatziioannou, A.

G. Alexandrakis, F. Rannou, and A. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Chaudhari, A.

A. Chaudhari, F. Darvas, J. Bading, R. Moats, P. Conti,  and et al, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Chen, Y.

K. Ju, L. Tseng, Y. Chen, and W. Lin, "Investigation of a scanned cylindrical ultrasound system for breast hyperthermia," Phys. Med. Biol. 51, 539-555 (2006).
[CrossRef] [PubMed]

Cheong, W.

W. Cheong, S. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quant. Electr. 26, 2166-2184 (1990).
[CrossRef]

Chick, A.

J. Lynn, R. Zwemer, A. Chick, and A. Miller, "A new method for the generation and use of focused ultrasound in experimental biology," J. Gen. Physiol. 26, 179-193 (1942).
[CrossRef] [PubMed]

Ciondric, D.

R. McGough, D. Ciondric, and T. Samulski, "Shape calibration of a conformal ultrasound therapy array," IEEE T. Ultras. Ferroel. Freq. Control 48, 494-505 (2001).
[CrossRef]

Clarke, R.

G. T. Haar, R. Clarke,M. Vaughan, and C. Hill, "Trackless surgery using focused ultrasound: Technique and case report," Min. Inv. Ther. 1, 13-15 (1991).
[CrossRef]

Cleveland, R.

R. Cleveland, M. Hamilton, and D. Blackstock, "Time-domain modeling of finite-amplitude sound beams in relaxing fluids," J. Acoust. Soc. Am. 99, 3312-3318 (1996).
[CrossRef]

Cobbold, R. C.

R. Zemp, J. Tavakkoli, and R. C. Cobbold, "Modeling of nonlinear ultrasound propagation in tissue from array transducers," J. Acoust. Soc. Am. 113, 139-152 (2003).
[CrossRef] [PubMed]

Cong, A.

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, "Practical Reconstruction Method for Bioluminescence Tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004).
[CrossRef]

Cong, W.

W. Cong, D. Kumar, L. Wang, and G. Wang, "A Born-type approximation method for bioluminescence tomography," Med. Phys pp. 679-686 (2006).
[CrossRef] [PubMed]

W. Cong and G. Wang, "Boundary integral method for bioluminescence tomography," J. Biomed. Opt. p. 020503 (2006).
[CrossRef] [PubMed]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, "Practical Reconstruction Method for Bioluminescence Tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004).
[CrossRef]

Connolly, C.

K. Taylor and C. Connolly, "Differing hepatic lesions caused by the same dose of ultrasound," J. Pathol. 98, 291-293 (1969).
[CrossRef] [PubMed]

Contag, C.

H. Zhao, T. Doyle, O. Coquoz, F. Kalish, B. Rice, and C. Contag, "Spectral characterization of Firefly-, Click Beetle- and Renilla- luciferase in mammalian cells and living mice," inMol. Imaging 3(3) (2004).

Conti, P.

A. Chaudhari, F. Darvas, J. Bading, R. Moats, P. Conti,  and et al, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Cooley, D.

D. Arora, D. Cooley, T. Perry, M. Skliar, and R. Roemer, "Direct thermal dose control of constrained focused ultrasound treatments: phantom and in vivo evaluation," Phys. Med. Biol. 50, 1919-1935 (2005).
[CrossRef] [PubMed]

Coquoz, O.

C. Kuo, O. Coquoz, T. Troy, D. Zwarg, and B. Rice, "Bioluminescent tomography for in vivo localization and quantification of luminescent sources from a multiple-view imaging system," Mol. Imaging 4, 370 (2005).

H. Zhao, T. Doyle, O. Coquoz, F. Kalish, B. Rice, and C. Contag, "Spectral characterization of Firefly-, Click Beetle- and Renilla- luciferase in mammalian cells and living mice," inMol. Imaging 3(3) (2004).

Cranston, D.

J. Kennedy, G. ter Haar, and D. Cranston, "High intensity focused ultrasound: surgery of the future," Br. J. of Radiol. 76, 590-599 (2003).
[CrossRef]

Crum, L. A.

M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, "Physical Mechanisms of the Therapeutic Effect of Ultrasound (A Review)," Acoustical Physics,  49, 369-388 (2003).
[CrossRef]

Darvas, F.

A. Chaudhari, F. Darvas, J. Bading, R. Moats, P. Conti,  and et al, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Davis, S.

Dehghani, H.

Denbow, M.

M. Denbow, I. Rivens, I. Rowland, M. Leach, N. Fisk, and G. ter Haar, "Preclinical development of non-invasive vascular occlusion with focused ultrasonic surgery for fetal therapy," Am. J. Obstet. Gynecol. 182, 387-392 (2000).
[CrossRef] [PubMed]

Doyle, T.

H. Zhao, T. Doyle, O. Coquoz, F. Kalish, B. Rice, and C. Contag, "Spectral characterization of Firefly-, Click Beetle- and Renilla- luciferase in mammalian cells and living mice," inMol. Imaging 3(3) (2004).

Dreyer, T.

S. Ginter, M. Liebler, E. Steiger, T. Dreyer, and R. Riedlinger, "Full wave modeling of therapeutic ultrasound: Nonlinear ultrasound propagation in ideal fluids," J. Acoust. Soc. Am. 111, 2049-2059 (2002).
[CrossRef] [PubMed]

M. Liebler, S. Ginter, T. Dreyer, and R. Riedlinger, "Simulation of enhanced absorption in ultrasound thermotherapy due to nonlinear effects," J. Acoust. Soc. Am. 109, 2458 (2001).

Ebbini, E.

R. McGough, M. Kessler, E. Ebbini, and C. Cain, "Treatment planning for hyperthermia with ultrasound phased arrays," IEEE T. Ultras. Ferroel. Freq. Control 43, 1074-1084 (1996).
[CrossRef]

Fisk, N.

M. Denbow, I. Rivens, I. Rowland, M. Leach, N. Fisk, and G. ter Haar, "Preclinical development of non-invasive vascular occlusion with focused ultrasonic surgery for fetal therapy," Am. J. Obstet. Gynecol. 182, 387-392 (2000).
[CrossRef] [PubMed]

Foster, F.

F. Foster and J. Hunt, "Transmission of ultrasound beams through human tissue-focusing and attenuation studies," Ultrasound Med. Biol. 5, 257-268 (1979).
[CrossRef] [PubMed]

Frizzell, L.

K. Ocheltree and L. Frizzell, "Sound field calculation for rectangular sources," IEEE T. Ultrason. Ferroel. Freq. Control 36, 242-247 (1989).
[CrossRef]

Fry, J. B. F.

W. Fry, J. B. F. Fry, R. Krumins, and J. Brennan, "Ultrasonic lesions in the mammalian central nervous system," Science 122, 517-518 (1955).
[CrossRef] [PubMed]

Fry, W.

W. Fry, J. B. F. Fry, R. Krumins, and J. Brennan, "Ultrasonic lesions in the mammalian central nervous system," Science 122, 517-518 (1955).
[CrossRef] [PubMed]

Ginter, S.

S. Ginter, M. Liebler, E. Steiger, T. Dreyer, and R. Riedlinger, "Full wave modeling of therapeutic ultrasound: Nonlinear ultrasound propagation in ideal fluids," J. Acoust. Soc. Am. 111, 2049-2059 (2002).
[CrossRef] [PubMed]

M. Liebler, S. Ginter, T. Dreyer, and R. Riedlinger, "Simulation of enhanced absorption in ultrasound thermotherapy due to nonlinear effects," J. Acoust. Soc. Am. 109, 2458 (2001).

E. Steiger and S. Ginter, "Numerical simulation of ultrasonic shock wave propagation in lossy liquids obeying a frequency power law," J. Acoust. Soc. Am. 105, 1231 (1999).
[CrossRef]

Griffith, L.

S. Hobbs, W. Monsky, F. Yuan, W. Roberts, L. Griffith, V. Torchilin, and R. Jain, "Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment," Proc. Natl. Acad. Sci. USA 95, 4607-4612 (1998).
[CrossRef] [PubMed]

Gu, X.

Haar, G. T.

G. T. Haar, R. Clarke,M. Vaughan, and C. Hill, "Trackless surgery using focused ultrasound: Technique and case report," Min. Inv. Ther. 1, 13-15 (1991).
[CrossRef]

Hamilton, M.

R. Cleveland, M. Hamilton, and D. Blackstock, "Time-domain modeling of finite-amplitude sound beams in relaxing fluids," J. Acoust. Soc. Am. 99, 3312-3318 (1996).
[CrossRef]

Held, R.

R. Held, V. Zderic, T. Nguyen, and S. Vaezy, "Annular phased-array high intensity focused device for imageguided therapy of uterine fibroids," IEEE T. Ultrasound Freq. Contr. 53, 335-348 (2006).
[CrossRef]

Hill, C.

G. T. Haar, R. Clarke,M. Vaughan, and C. Hill, "Trackless surgery using focused ultrasound: Technique and case report," Min. Inv. Ther. 1, 13-15 (1991).
[CrossRef]

Hobbs, S.

S. Hobbs, W. Monsky, F. Yuan, W. Roberts, L. Griffith, V. Torchilin, and R. Jain, "Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment," Proc. Natl. Acad. Sci. USA 95, 4607-4612 (1998).
[CrossRef] [PubMed]

Hoffman, E.

Holland, C.

R. Apfel and C. Holland, "Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound," Ultrasound Med. Biol. 17, 179-85 (1991).
[CrossRef] [PubMed]

Hunt, J.

F. Foster and J. Hunt, "Transmission of ultrasound beams through human tissue-focusing and attenuation studies," Ultrasound Med. Biol. 5, 257-268 (1979).
[CrossRef] [PubMed]

Jaffer, F.

F. Jaffer and R. Weissleder, "Molecular imaging in the clinical arena," Jama. pp. 855-62 (2005).
[CrossRef] [PubMed]

Jain, R.

S. Hobbs, W. Monsky, F. Yuan, W. Roberts, L. Griffith, V. Torchilin, and R. Jain, "Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment," Proc. Natl. Acad. Sci. USA 95, 4607-4612 (1998).
[CrossRef] [PubMed]

Jiang, H.

Jiang, M.

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, "Practical Reconstruction Method for Bioluminescence Tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

Y. Li, M. Jiang, and G. Wang, "Computational optical biopsy," Biomed. Eng. Online pp. 4-36 (2005).

G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289- 2299 (2004).
[CrossRef] [PubMed]

M. Jiang and G. Wang, "Image reconstruction for bioluminescence tomography," Proc. SPIE 5535, 335-351 (2004).
[CrossRef]

Jiang, S.

Jr, A. Z. D. T.

J. Locke, A. Z. D. T. Jr., J. Allan, K. Mazzarella, P. Novak, D. Hanson, A. Singh, E. Moros, and T. Pandita, "Localized versus regional hyperthermia: comparison of xenotransplants treated with a small animal ultrasound and waterbath limb immersion," Int. J. Hyperthermia 21, 271-281 (2005).
[CrossRef] [PubMed]

Ju, K.

K. Ju, L. Tseng, Y. Chen, and W. Lin, "Investigation of a scanned cylindrical ultrasound system for breast hyperthermia," Phys. Med. Biol. 51, 539-555 (2006).
[CrossRef] [PubMed]

Kalish, F.

H. Zhao, T. Doyle, O. Coquoz, F. Kalish, B. Rice, and C. Contag, "Spectral characterization of Firefly-, Click Beetle- and Renilla- luciferase in mammalian cells and living mice," inMol. Imaging 3(3) (2004).

Kargl, S. G.

M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, "Physical Mechanisms of the Therapeutic Effect of Ultrasound (A Review)," Acoustical Physics,  49, 369-388 (2003).
[CrossRef]

Kelly, J.

R. McGough, T. Samulski, and J. Kelly, "An efficient grid sectoring method for calculations of the near-field pressure generated by a circular piston," J. Acoust. Soc. Amer. 115, 1942-1954 (2004).
[CrossRef]

Kennedy, J.

J. Kennedy, G. ter Haar, and D. Cranston, "High intensity focused ultrasound: surgery of the future," Br. J. of Radiol. 76, 590-599 (2003).
[CrossRef]

Kessler, M.

R. McGough, M. Kessler, E. Ebbini, and C. Cain, "Treatment planning for hyperthermia with ultrasound phased arrays," IEEE T. Ultras. Ferroel. Freq. Control 43, 1074-1084 (1996).
[CrossRef]

Khokhlova, V. A.

M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, "Physical Mechanisms of the Therapeutic Effect of Ultrasound (A Review)," Acoustical Physics,  49, 369-388 (2003).
[CrossRef]

Krumins, R.

W. Fry, J. B. F. Fry, R. Krumins, and J. Brennan, "Ultrasonic lesions in the mammalian central nervous system," Science 122, 517-518 (1955).
[CrossRef] [PubMed]

Kumar, D.

W. Cong, D. Kumar, L. Wang, and G. Wang, "A Born-type approximation method for bioluminescence tomography," Med. Phys pp. 679-686 (2006).
[CrossRef] [PubMed]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, "Practical Reconstruction Method for Bioluminescence Tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004).
[CrossRef]

Kuo, C.

C. Kuo, O. Coquoz, T. Troy, D. Zwarg, and B. Rice, "Bioluminescent tomography for in vivo localization and quantification of luminescent sources from a multiple-view imaging system," Mol. Imaging 4, 370 (2005).

Larcom, L.

Leach, M.

M. Denbow, I. Rivens, I. Rowland, M. Leach, N. Fisk, and G. ter Haar, "Preclinical development of non-invasive vascular occlusion with focused ultrasonic surgery for fetal therapy," Am. J. Obstet. Gynecol. 182, 387-392 (2000).
[CrossRef] [PubMed]

Lele, P.

P. Lele, "Concurrent detection of the production of ultrasonic lesions," Med. Biol. Engng. 4, 451-456 (1996).
[CrossRef]

Lentle, B.

M. Thakur and B. Lentle, "Report of a summit on molecular imaging," AJR Am. J. Roentgenol 186, 297-9.
[PubMed]

Lewis, M.

N. Slavine, M. Lewis, E. Richer, and P. Antich, "Iterative reconstruction method for light emitting sources based on the diffusion equation," Med. Phys. 33, 61-69 (2006).
[CrossRef] [PubMed]

Li, Y.

Y. Li, M. Jiang, and G. Wang, "Computational optical biopsy," Biomed. Eng. Online pp. 4-36 (2005).

G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289- 2299 (2004).
[CrossRef] [PubMed]

Liebler, M.

S. Ginter, M. Liebler, E. Steiger, T. Dreyer, and R. Riedlinger, "Full wave modeling of therapeutic ultrasound: Nonlinear ultrasound propagation in ideal fluids," J. Acoust. Soc. Am. 111, 2049-2059 (2002).
[CrossRef] [PubMed]

M. Liebler, S. Ginter, T. Dreyer, and R. Riedlinger, "Simulation of enhanced absorption in ultrasound thermotherapy due to nonlinear effects," J. Acoust. Soc. Am. 109, 2458 (2001).

Lin, W.

K. Ju, L. Tseng, Y. Chen, and W. Lin, "Investigation of a scanned cylindrical ultrasound system for breast hyperthermia," Phys. Med. Biol. 51, 539-555 (2006).
[CrossRef] [PubMed]

Liu, Y.

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, "Practical Reconstruction Method for Bioluminescence Tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004).
[CrossRef]

Locke, J.

P. Novak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a Small Animal Hyperthermia Ultrasound System (SAHUS): Report on 83 Tumors," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef] [PubMed]

J. Locke, A. Z. D. T. Jr., J. Allan, K. Mazzarella, P. Novak, D. Hanson, A. Singh, E. Moros, and T. Pandita, "Localized versus regional hyperthermia: comparison of xenotransplants treated with a small animal ultrasound and waterbath limb immersion," Int. J. Hyperthermia 21, 271-281 (2005).
[CrossRef] [PubMed]

P. Vovak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef]

Lu, X.

X. Lu, E. Burdette, and G. Svensson, "Ultrasound field calculation in a water-soft tissue medium," Int. J. Hyperthermia 14, 169-182 (1998).
[CrossRef] [PubMed]

Ludwig, R.

M. Wismer and R. Ludwig, "An explicit numerical time domain formulation to simulate pulsed pressure waves in viscous fluids exhibiting arbitrary frequency power law attenuation," IEEE T. Ultrason. Ferroelectr. Freq. Control 42, 1040-1049 (1995).
[CrossRef]

Lynn, J.

J. Lynn, R. Zwemer, A. Chick, and A. Miller, "A new method for the generation and use of focused ultrasound in experimental biology," J. Gen. Physiol. 26, 179-193 (1942).
[CrossRef] [PubMed]

McCray, P.

McGough, R.

R. McGough, T. Samulski, and J. Kelly, "An efficient grid sectoring method for calculations of the near-field pressure generated by a circular piston," J. Acoust. Soc. Amer. 115, 1942-1954 (2004).
[CrossRef]

R. McGough, D. Ciondric, and T. Samulski, "Shape calibration of a conformal ultrasound therapy array," IEEE T. Ultras. Ferroel. Freq. Control 48, 494-505 (2001).
[CrossRef]

R. McGough, M. Kessler, E. Ebbini, and C. Cain, "Treatment planning for hyperthermia with ultrasound phased arrays," IEEE T. Ultras. Ferroel. Freq. Control 43, 1074-1084 (1996).
[CrossRef]

McLennan, G.

Meinel, J.

G. Wang, E. Hoffman, G. McLennan, L. Wang, M. Suter, and J. Meinel, "Development of the first bioluminescent CT scanner," Radiology 229, 566 (2003).

Miller, A.

J. Lynn, R. Zwemer, A. Chick, and A. Miller, "A new method for the generation and use of focused ultrasound in experimental biology," J. Gen. Physiol. 26, 179-193 (1942).
[CrossRef] [PubMed]

Moats, R.

A. Chaudhari, F. Darvas, J. Bading, R. Moats, P. Conti,  and et al, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

Monsky, W.

S. Hobbs, W. Monsky, F. Yuan, W. Roberts, L. Griffith, V. Torchilin, and R. Jain, "Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment," Proc. Natl. Acad. Sci. USA 95, 4607-4612 (1998).
[CrossRef] [PubMed]

Moros, E.

P. Vovak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef]

P. Novak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a Small Animal Hyperthermia Ultrasound System (SAHUS): Report on 83 Tumors," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef] [PubMed]

A. Singh, E. Moros, P. Novak, W. S. W, A. Zeug, J. Locke, and R. Myerson, "MicroPET-compatible, small animal hyperthermia ultrasound system (SAHUS) for sustainable, collimated and controlled hyperthermia of subcutaneously implanted tumours," Int. J. Hyperthermia 20, 32-44 (2004).
[CrossRef]

Myerson, R.

P. Novak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a Small Animal Hyperthermia Ultrasound System (SAHUS): Report on 83 Tumors," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef] [PubMed]

P. Vovak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef]

Nachman, A.

A. Nachman, J. Smith, and R. Wang, "An equation for acoustic propagation in inhomogeneous media with relaxation losses," J. Acoust. Soc. Am. 88, 1584-1595 (1990).
[CrossRef]

Nguyen, T.

R. Held, V. Zderic, T. Nguyen, and S. Vaezy, "Annular phased-array high intensity focused device for imageguided therapy of uterine fibroids," IEEE T. Ultrasound Freq. Contr. 53, 335-348 (2006).
[CrossRef]

Norton, G.

G. Norton and J. Novarini, "Including dispersion and attenuation in the time domain for wave propagation in isotropic media," J. Acoust. Soc. Am. 113, 3024-3031 (2003).
[CrossRef] [PubMed]

Novak, P.

P. Novak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a Small Animal Hyperthermia Ultrasound System (SAHUS): Report on 83 Tumors," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef] [PubMed]

A. Singh, E. Moros, P. Novak, W. S. W, A. Zeug, J. Locke, and R. Myerson, "MicroPET-compatible, small animal hyperthermia ultrasound system (SAHUS) for sustainable, collimated and controlled hyperthermia of subcutaneously implanted tumours," Int. J. Hyperthermia 20, 32-44 (2004).
[CrossRef]

Novarini, J.

G. Norton and J. Novarini, "Including dispersion and attenuation in the time domain for wave propagation in isotropic media," J. Acoust. Soc. Am. 113, 3024-3031 (2003).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, J. Ripoll, L. Wang, and R. Weissleder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo." Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Ocheltree, K.

K. Ocheltree and L. Frizzell, "Sound field calculation for rectangular sources," IEEE T. Ultrason. Ferroel. Freq. Control 36, 242-247 (1989).
[CrossRef]

Parry, J.

P. Novak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a Small Animal Hyperthermia Ultrasound System (SAHUS): Report on 83 Tumors," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef] [PubMed]

P. Vovak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef]

Patterson, M.

Paulsen, K.

Pennes, H.

H. Pennes, "nalysis of tissue and arterial blood temperatures in the resting human forearm," J. Appl. Physiol. 1, 19-122 (1948).

Peplow, A.

A. Peplow, "Numerical predictions of sound propagation from a cutting over a road-side noise barrier," J. Comput. Acoust. 13, 145-162 (2005).
[CrossRef]

Perry, T.

D. Arora, D. Cooley, T. Perry, M. Skliar, and R. Roemer, "Direct thermal dose control of constrained focused ultrasound treatments: phantom and in vivo evaluation," Phys. Med. Biol. 50, 1919-1935 (2005).
[CrossRef] [PubMed]

Pogue, B.

Pond, J.

R. Warwick and J. Pond, "Trackless lesions in nervous tissues produced by HIFU (high-intensity mechanical waves)," J. Anat. 102, 387-405 (1968).
[PubMed]

Prahl, S.

W. Cheong, S. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quant. Electr. 26, 2166-2184 (1990).
[CrossRef]

Rannou, F.

G. Alexandrakis, F. Rannou, and A. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Rice, B.

C. Kuo, O. Coquoz, T. Troy, D. Zwarg, and B. Rice, "Bioluminescent tomography for in vivo localization and quantification of luminescent sources from a multiple-view imaging system," Mol. Imaging 4, 370 (2005).

H. Zhao, T. Doyle, O. Coquoz, F. Kalish, B. Rice, and C. Contag, "Spectral characterization of Firefly-, Click Beetle- and Renilla- luciferase in mammalian cells and living mice," inMol. Imaging 3(3) (2004).

Richer, E.

N. Slavine, M. Lewis, E. Richer, and P. Antich, "Iterative reconstruction method for light emitting sources based on the diffusion equation," Med. Phys. 33, 61-69 (2006).
[CrossRef] [PubMed]

Riedlinger, R.

S. Ginter, M. Liebler, E. Steiger, T. Dreyer, and R. Riedlinger, "Full wave modeling of therapeutic ultrasound: Nonlinear ultrasound propagation in ideal fluids," J. Acoust. Soc. Am. 111, 2049-2059 (2002).
[CrossRef] [PubMed]

M. Liebler, S. Ginter, T. Dreyer, and R. Riedlinger, "Simulation of enhanced absorption in ultrasound thermotherapy due to nonlinear effects," J. Acoust. Soc. Am. 109, 2458 (2001).

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. Wang, and R. Weissleder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Rivens, I.

M. Denbow, I. Rivens, I. Rowland, M. Leach, N. Fisk, and G. ter Haar, "Preclinical development of non-invasive vascular occlusion with focused ultrasonic surgery for fetal therapy," Am. J. Obstet. Gynecol. 182, 387-392 (2000).
[CrossRef] [PubMed]

Roberts, W.

S. Hobbs, W. Monsky, F. Yuan, W. Roberts, L. Griffith, V. Torchilin, and R. Jain, "Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment," Proc. Natl. Acad. Sci. USA 95, 4607-4612 (1998).
[CrossRef] [PubMed]

Roemer, R.

D. Arora, D. Cooley, T. Perry, M. Skliar, and R. Roemer, "Direct thermal dose control of constrained focused ultrasound treatments: phantom and in vivo evaluation," Phys. Med. Biol. 50, 1919-1935 (2005).
[CrossRef] [PubMed]

Rogers, B.

P. Novak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a Small Animal Hyperthermia Ultrasound System (SAHUS): Report on 83 Tumors," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef] [PubMed]

P. Vovak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef]

Rossin, R.

P. Vovak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef]

P. Novak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a Small Animal Hyperthermia Ultrasound System (SAHUS): Report on 83 Tumors," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef] [PubMed]

Rowland, I.

M. Denbow, I. Rivens, I. Rowland, M. Leach, N. Fisk, and G. ter Haar, "Preclinical development of non-invasive vascular occlusion with focused ultrasonic surgery for fetal therapy," Am. J. Obstet. Gynecol. 182, 387-392 (2000).
[CrossRef] [PubMed]

Samulski, T.

R. McGough, T. Samulski, and J. Kelly, "An efficient grid sectoring method for calculations of the near-field pressure generated by a circular piston," J. Acoust. Soc. Amer. 115, 1942-1954 (2004).
[CrossRef]

R. McGough, D. Ciondric, and T. Samulski, "Shape calibration of a conformal ultrasound therapy array," IEEE T. Ultras. Ferroel. Freq. Control 48, 494-505 (2001).
[CrossRef]

Sapozhnikov, O. A.

M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, "Physical Mechanisms of the Therapeutic Effect of Ultrasound (A Review)," Acoustical Physics,  49, 369-388 (2003).
[CrossRef]

Shepp, L.

L. Shepp and Y. Vardi, "Maximum Likelihood Reconstruction for Emission Tomography," IEEE T. Med. Img. MI-1, 113-122 (1982).
[CrossRef]

Singh, A.

P. Novak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a Small Animal Hyperthermia Ultrasound System (SAHUS): Report on 83 Tumors," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef] [PubMed]

P. Vovak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef]

A. Singh, E. Moros, P. Novak, W. S. W, A. Zeug, J. Locke, and R. Myerson, "MicroPET-compatible, small animal hyperthermia ultrasound system (SAHUS) for sustainable, collimated and controlled hyperthermia of subcutaneously implanted tumours," Int. J. Hyperthermia 20, 32-44 (2004).
[CrossRef]

Skliar, M.

D. Arora, D. Cooley, T. Perry, M. Skliar, and R. Roemer, "Direct thermal dose control of constrained focused ultrasound treatments: phantom and in vivo evaluation," Phys. Med. Biol. 50, 1919-1935 (2005).
[CrossRef] [PubMed]

Slavine, N.

N. Slavine, M. Lewis, E. Richer, and P. Antich, "Iterative reconstruction method for light emitting sources based on the diffusion equation," Med. Phys. 33, 61-69 (2006).
[CrossRef] [PubMed]

Smith, J.

A. Nachman, J. Smith, and R. Wang, "An equation for acoustic propagation in inhomogeneous media with relaxation losses," J. Acoust. Soc. Am. 88, 1584-1595 (1990).
[CrossRef]

Souchon, R.

J. Tavakkoli, D. Cathignol, and R. Souchon, "Modeling of pulsed finite-amplitude focused sound beams in time domain," J. Acoust. Soc. Am. 104, 2061-2072 (1998).
[CrossRef]

Steiger, E.

S. Ginter, M. Liebler, E. Steiger, T. Dreyer, and R. Riedlinger, "Full wave modeling of therapeutic ultrasound: Nonlinear ultrasound propagation in ideal fluids," J. Acoust. Soc. Am. 111, 2049-2059 (2002).
[CrossRef] [PubMed]

E. Steiger and S. Ginter, "Numerical simulation of ultrasonic shock wave propagation in lossy liquids obeying a frequency power law," J. Acoust. Soc. Am. 105, 1231 (1999).
[CrossRef]

Straube, W.

P. Novak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a Small Animal Hyperthermia Ultrasound System (SAHUS): Report on 83 Tumors," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef] [PubMed]

P. Vovak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef]

Suter, M.

G. Wang, E. Hoffman, G. McLennan, L. Wang, M. Suter, and J. Meinel, "Development of the first bioluminescent CT scanner," Radiology 229, 566 (2003).

Svensson, G.

X. Lu, E. Burdette, and G. Svensson, "Ultrasound field calculation in a water-soft tissue medium," Int. J. Hyperthermia 14, 169-182 (1998).
[CrossRef] [PubMed]

Szabo, T.

T. Szabo, "Time domain wave equation for lossy media obeying a frequency power law," J. Acoust. Soc. Am. 96, 491-500 (1994)).
[CrossRef]

Tavakkoli, J.

R. Zemp, J. Tavakkoli, and R. C. Cobbold, "Modeling of nonlinear ultrasound propagation in tissue from array transducers," J. Acoust. Soc. Am. 113, 139-152 (2003).
[CrossRef] [PubMed]

J. Tavakkoli, D. Cathignol, and R. Souchon, "Modeling of pulsed finite-amplitude focused sound beams in time domain," J. Acoust. Soc. Am. 104, 2061-2072 (1998).
[CrossRef]

Taylor, K.

K. Taylor and C. Connolly, "Differing hepatic lesions caused by the same dose of ultrasound," J. Pathol. 98, 291-293 (1969).
[CrossRef] [PubMed]

ter Haar, G.

J. Kennedy, G. ter Haar, and D. Cranston, "High intensity focused ultrasound: surgery of the future," Br. J. of Radiol. 76, 590-599 (2003).
[CrossRef]

M. Denbow, I. Rivens, I. Rowland, M. Leach, N. Fisk, and G. ter Haar, "Preclinical development of non-invasive vascular occlusion with focused ultrasonic surgery for fetal therapy," Am. J. Obstet. Gynecol. 182, 387-392 (2000).
[CrossRef] [PubMed]

Thakur, M.

M. Thakur and B. Lentle, "Report of a summit on molecular imaging," AJR Am. J. Roentgenol 186, 297-9.
[PubMed]

Torchilin, V.

S. Hobbs, W. Monsky, F. Yuan, W. Roberts, L. Griffith, V. Torchilin, and R. Jain, "Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment," Proc. Natl. Acad. Sci. USA 95, 4607-4612 (1998).
[CrossRef] [PubMed]

Troy, T.

C. Kuo, O. Coquoz, T. Troy, D. Zwarg, and B. Rice, "Bioluminescent tomography for in vivo localization and quantification of luminescent sources from a multiple-view imaging system," Mol. Imaging 4, 370 (2005).

Tseng, L.

K. Ju, L. Tseng, Y. Chen, and W. Lin, "Investigation of a scanned cylindrical ultrasound system for breast hyperthermia," Phys. Med. Biol. 51, 539-555 (2006).
[CrossRef] [PubMed]

Tung, C.

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo." Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Vaezy, S.

R. Held, V. Zderic, T. Nguyen, and S. Vaezy, "Annular phased-array high intensity focused device for imageguided therapy of uterine fibroids," IEEE T. Ultrasound Freq. Contr. 53, 335-348 (2006).
[CrossRef]

Vardi, Y.

L. Shepp and Y. Vardi, "Maximum Likelihood Reconstruction for Emission Tomography," IEEE T. Med. Img. MI-1, 113-122 (1982).
[CrossRef]

Vaughan, M.

G. T. Haar, R. Clarke,M. Vaughan, and C. Hill, "Trackless surgery using focused ultrasound: Technique and case report," Min. Inv. Ther. 1, 13-15 (1991).
[CrossRef]

Vovak, P.

P. Vovak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef]

Wang, G.

W. Cong and G. Wang, "Boundary integral method for bioluminescence tomography," J. Biomed. Opt. p. 020503 (2006).
[CrossRef] [PubMed]

W. Cong, D. Kumar, L. Wang, and G. Wang, "A Born-type approximation method for bioluminescence tomography," Med. Phys pp. 679-686 (2006).
[CrossRef] [PubMed]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, "Practical Reconstruction Method for Bioluminescence Tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

Y. Li, M. Jiang, and G. Wang, "Computational optical biopsy," Biomed. Eng. Online pp. 4-36 (2005).

W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004).
[CrossRef]

G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289- 2299 (2004).
[CrossRef] [PubMed]

M. Jiang and G. Wang, "Image reconstruction for bioluminescence tomography," Proc. SPIE 5535, 335-351 (2004).
[CrossRef]

G. Wang, E. Hoffman, G. McLennan, L. Wang, M. Suter, and J. Meinel, "Development of the first bioluminescent CT scanner," Radiology 229, 566 (2003).

Wang, L.

W. Cong, D. Kumar, L. Wang, and G. Wang, "A Born-type approximation method for bioluminescence tomography," Med. Phys pp. 679-686 (2006).
[CrossRef] [PubMed]

W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. Wang, E. Hoffman, G. McLennan, P. McCray, J. Zabner, and A. Cong, "Practical Reconstruction Method for Bioluminescence Tomography," Opt. Express 13, 6756-6771 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. Wang, and R. Weissleder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

G. Wang, E. Hoffman, G. McLennan, L. Wang, M. Suter, and J. Meinel, "Development of the first bioluminescent CT scanner," Radiology 229, 566 (2003).

Wang, R.

A. Nachman, J. Smith, and R. Wang, "An equation for acoustic propagation in inhomogeneous media with relaxation losses," J. Acoust. Soc. Am. 88, 1584-1595 (1990).
[CrossRef]

Warwick, R.

R. Warwick and J. Pond, "Trackless lesions in nervous tissues produced by HIFU (high-intensity mechanical waves)," J. Anat. 102, 387-405 (1968).
[PubMed]

Wei, G.

G. Wei, Y. Zhao, and Y. Xiang, "iscrete singular convolution and its application to the analysis of plates with internal supports. I Theory and algorithm," Int. J. Numer. Methods Engng. 55, 913-946 (2002).
[CrossRef]

G. Wei, "Vibration analysis by discrete singular convolution," J. Sound Vibration 244, 535-553 (2001).
[CrossRef]

Weissleder, R.

F. Jaffer and R. Weissleder, "Molecular imaging in the clinical arena," Jama. pp. 855-62 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. Wang, and R. Weissleder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo." Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Welch, A. J.

W. Cheong, S. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quant. Electr. 26, 2166-2184 (1990).
[CrossRef]

Wiskin, J.

X. Yuan, D. Borup, and J. Wiskin, "Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition," IEEE T. Ultrason. Ferroelectr. Freq. Control 46, 14-23 (1999).
[CrossRef]

Wismer, M.

M. Wismer and R. Ludwig, "An explicit numerical time domain formulation to simulate pulsed pressure waves in viscous fluids exhibiting arbitrary frequency power law attenuation," IEEE T. Ultrason. Ferroelectr. Freq. Control 42, 1040-1049 (1995).
[CrossRef]

Xiang, Y.

G. Wei, Y. Zhao, and Y. Xiang, "iscrete singular convolution and its application to the analysis of plates with internal supports. I Theory and algorithm," Int. J. Numer. Methods Engng. 55, 913-946 (2002).
[CrossRef]

Yuan, F.

S. Hobbs, W. Monsky, F. Yuan, W. Roberts, L. Griffith, V. Torchilin, and R. Jain, "Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment," Proc. Natl. Acad. Sci. USA 95, 4607-4612 (1998).
[CrossRef] [PubMed]

Yuan, X.

X. Yuan, D. Borup, and J. Wiskin, "Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition," IEEE T. Ultrason. Ferroelectr. Freq. Control 46, 14-23 (1999).
[CrossRef]

Zabner, J.

Zderic, V.

R. Held, V. Zderic, T. Nguyen, and S. Vaezy, "Annular phased-array high intensity focused device for imageguided therapy of uterine fibroids," IEEE T. Ultrasound Freq. Contr. 53, 335-348 (2006).
[CrossRef]

Zemp, R.

R. Zemp, J. Tavakkoli, and R. C. Cobbold, "Modeling of nonlinear ultrasound propagation in tissue from array transducers," J. Acoust. Soc. Am. 113, 139-152 (2003).
[CrossRef] [PubMed]

Zerhouni, E.

E. Zerhouni, "Medicine. The NIH Roadmap," Science 302(5642), 63-72 (2003).
[CrossRef] [PubMed]

Zeug, A.

P. Novak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a Small Animal Hyperthermia Ultrasound System (SAHUS): Report on 83 Tumors," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef] [PubMed]

P. Vovak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef]

Zhang, Q.

Zhao, H.

H. Zhao, T. Doyle, O. Coquoz, F. Kalish, B. Rice, and C. Contag, "Spectral characterization of Firefly-, Click Beetle- and Renilla- luciferase in mammalian cells and living mice," inMol. Imaging 3(3) (2004).

Zhao, Y.

G. Wei, Y. Zhao, and Y. Xiang, "iscrete singular convolution and its application to the analysis of plates with internal supports. I Theory and algorithm," Int. J. Numer. Methods Engng. 55, 913-946 (2002).
[CrossRef]

Zwarg, D.

C. Kuo, O. Coquoz, T. Troy, D. Zwarg, and B. Rice, "Bioluminescent tomography for in vivo localization and quantification of luminescent sources from a multiple-view imaging system," Mol. Imaging 4, 370 (2005).

Zwemer, R.

J. Lynn, R. Zwemer, A. Chick, and A. Miller, "A new method for the generation and use of focused ultrasound in experimental biology," J. Gen. Physiol. 26, 179-193 (1942).
[CrossRef] [PubMed]

Acoustical Physics (1)

M. R. Bailey, V. A. Khokhlova, O. A. Sapozhnikov, S. G. Kargl, and L. A. Crum, "Physical Mechanisms of the Therapeutic Effect of Ultrasound (A Review)," Acoustical Physics,  49, 369-388 (2003).
[CrossRef]

AJR Am. J. Roentgenol (1)

M. Thakur and B. Lentle, "Report of a summit on molecular imaging," AJR Am. J. Roentgenol 186, 297-9.
[PubMed]

Am. J. Obstet. Gynecol. (1)

M. Denbow, I. Rivens, I. Rowland, M. Leach, N. Fisk, and G. ter Haar, "Preclinical development of non-invasive vascular occlusion with focused ultrasonic surgery for fetal therapy," Am. J. Obstet. Gynecol. 182, 387-392 (2000).
[CrossRef] [PubMed]

Biomed. Eng. Online (1)

Y. Li, M. Jiang, and G. Wang, "Computational optical biopsy," Biomed. Eng. Online pp. 4-36 (2005).

Br. J. of Radiol. (1)

J. Kennedy, G. ter Haar, and D. Cranston, "High intensity focused ultrasound: surgery of the future," Br. J. of Radiol. 76, 590-599 (2003).
[CrossRef]

IEEE J. Quant. Electr. (1)

W. Cheong, S. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quant. Electr. 26, 2166-2184 (1990).
[CrossRef]

IEEE T. Med. Img. (1)

L. Shepp and Y. Vardi, "Maximum Likelihood Reconstruction for Emission Tomography," IEEE T. Med. Img. MI-1, 113-122 (1982).
[CrossRef]

IEEE T. Ultras. Ferroel. Freq. Control (2)

R. McGough, M. Kessler, E. Ebbini, and C. Cain, "Treatment planning for hyperthermia with ultrasound phased arrays," IEEE T. Ultras. Ferroel. Freq. Control 43, 1074-1084 (1996).
[CrossRef]

R. McGough, D. Ciondric, and T. Samulski, "Shape calibration of a conformal ultrasound therapy array," IEEE T. Ultras. Ferroel. Freq. Control 48, 494-505 (2001).
[CrossRef]

IEEE T. Ultrason. Ferroel. Freq. Control (1)

K. Ocheltree and L. Frizzell, "Sound field calculation for rectangular sources," IEEE T. Ultrason. Ferroel. Freq. Control 36, 242-247 (1989).
[CrossRef]

IEEE T. Ultrason. Ferroelectr. Freq. Control (2)

M. Wismer and R. Ludwig, "An explicit numerical time domain formulation to simulate pulsed pressure waves in viscous fluids exhibiting arbitrary frequency power law attenuation," IEEE T. Ultrason. Ferroelectr. Freq. Control 42, 1040-1049 (1995).
[CrossRef]

X. Yuan, D. Borup, and J. Wiskin, "Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition," IEEE T. Ultrason. Ferroelectr. Freq. Control 46, 14-23 (1999).
[CrossRef]

IEEE T. Ultrasound Freq. Contr. (1)

R. Held, V. Zderic, T. Nguyen, and S. Vaezy, "Annular phased-array high intensity focused device for imageguided therapy of uterine fibroids," IEEE T. Ultrasound Freq. Contr. 53, 335-348 (2006).
[CrossRef]

Int. J. Hyperthermia (3)

A. Singh, E. Moros, P. Novak, W. S. W, A. Zeug, J. Locke, and R. Myerson, "MicroPET-compatible, small animal hyperthermia ultrasound system (SAHUS) for sustainable, collimated and controlled hyperthermia of subcutaneously implanted tumours," Int. J. Hyperthermia 20, 32-44 (2004).
[CrossRef]

J. Locke, A. Z. D. T. Jr., J. Allan, K. Mazzarella, P. Novak, D. Hanson, A. Singh, E. Moros, and T. Pandita, "Localized versus regional hyperthermia: comparison of xenotransplants treated with a small animal ultrasound and waterbath limb immersion," Int. J. Hyperthermia 21, 271-281 (2005).
[CrossRef] [PubMed]

X. Lu, E. Burdette, and G. Svensson, "Ultrasound field calculation in a water-soft tissue medium," Int. J. Hyperthermia 14, 169-182 (1998).
[CrossRef] [PubMed]

Int. J. Numer. Methods Engng. (1)

G. Wei, Y. Zhao, and Y. Xiang, "iscrete singular convolution and its application to the analysis of plates with internal supports. I Theory and algorithm," Int. J. Numer. Methods Engng. 55, 913-946 (2002).
[CrossRef]

J. Acoust. Soc. Am. (9)

E. Steiger and S. Ginter, "Numerical simulation of ultrasonic shock wave propagation in lossy liquids obeying a frequency power law," J. Acoust. Soc. Am. 105, 1231 (1999).
[CrossRef]

A. Nachman, J. Smith, and R. Wang, "An equation for acoustic propagation in inhomogeneous media with relaxation losses," J. Acoust. Soc. Am. 88, 1584-1595 (1990).
[CrossRef]

R. Cleveland, M. Hamilton, and D. Blackstock, "Time-domain modeling of finite-amplitude sound beams in relaxing fluids," J. Acoust. Soc. Am. 99, 3312-3318 (1996).
[CrossRef]

J. Tavakkoli, D. Cathignol, and R. Souchon, "Modeling of pulsed finite-amplitude focused sound beams in time domain," J. Acoust. Soc. Am. 104, 2061-2072 (1998).
[CrossRef]

R. Zemp, J. Tavakkoli, and R. C. Cobbold, "Modeling of nonlinear ultrasound propagation in tissue from array transducers," J. Acoust. Soc. Am. 113, 139-152 (2003).
[CrossRef] [PubMed]

T. Szabo, "Time domain wave equation for lossy media obeying a frequency power law," J. Acoust. Soc. Am. 96, 491-500 (1994)).
[CrossRef]

G. Norton and J. Novarini, "Including dispersion and attenuation in the time domain for wave propagation in isotropic media," J. Acoust. Soc. Am. 113, 3024-3031 (2003).
[CrossRef] [PubMed]

S. Ginter, M. Liebler, E. Steiger, T. Dreyer, and R. Riedlinger, "Full wave modeling of therapeutic ultrasound: Nonlinear ultrasound propagation in ideal fluids," J. Acoust. Soc. Am. 111, 2049-2059 (2002).
[CrossRef] [PubMed]

M. Liebler, S. Ginter, T. Dreyer, and R. Riedlinger, "Simulation of enhanced absorption in ultrasound thermotherapy due to nonlinear effects," J. Acoust. Soc. Am. 109, 2458 (2001).

J. Acoust. Soc. Amer. (1)

R. McGough, T. Samulski, and J. Kelly, "An efficient grid sectoring method for calculations of the near-field pressure generated by a circular piston," J. Acoust. Soc. Amer. 115, 1942-1954 (2004).
[CrossRef]

J. Anat. (1)

R. Warwick and J. Pond, "Trackless lesions in nervous tissues produced by HIFU (high-intensity mechanical waves)," J. Anat. 102, 387-405 (1968).
[PubMed]

J. Appl. Physiol. (1)

H. Pennes, "nalysis of tissue and arterial blood temperatures in the resting human forearm," J. Appl. Physiol. 1, 19-122 (1948).

J. Biomed. Opt (1)

W. Cong and G. Wang, "Boundary integral method for bioluminescence tomography," J. Biomed. Opt. p. 020503 (2006).
[CrossRef] [PubMed]

J. Comput. Acoust. (1)

A. Peplow, "Numerical predictions of sound propagation from a cutting over a road-side noise barrier," J. Comput. Acoust. 13, 145-162 (2005).
[CrossRef]

J. Gen. Physiol. (1)

J. Lynn, R. Zwemer, A. Chick, and A. Miller, "A new method for the generation and use of focused ultrasound in experimental biology," J. Gen. Physiol. 26, 179-193 (1942).
[CrossRef] [PubMed]

J. Pathol. (1)

K. Taylor and C. Connolly, "Differing hepatic lesions caused by the same dose of ultrasound," J. Pathol. 98, 291-293 (1969).
[CrossRef] [PubMed]

J. Sound Vibration (1)

G. Wei, "Vibration analysis by discrete singular convolution," J. Sound Vibration 244, 535-553 (2001).
[CrossRef]

Jama (1)

F. Jaffer and R. Weissleder, "Molecular imaging in the clinical arena," Jama. pp. 855-62 (2005).
[CrossRef] [PubMed]

Med. Biol. Engng. (1)

P. Lele, "Concurrent detection of the production of ultrasonic lesions," Med. Biol. Engng. 4, 451-456 (1996).
[CrossRef]

Med. Phys (1)

W. Cong, D. Kumar, L. Wang, and G. Wang, "A Born-type approximation method for bioluminescence tomography," Med. Phys pp. 679-686 (2006).
[CrossRef] [PubMed]

Med. Phys. (2)

N. Slavine, M. Lewis, E. Richer, and P. Antich, "Iterative reconstruction method for light emitting sources based on the diffusion equation," Med. Phys. 33, 61-69 (2006).
[CrossRef] [PubMed]

G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289- 2299 (2004).
[CrossRef] [PubMed]

Min. Inv. Ther. (1)

G. T. Haar, R. Clarke,M. Vaughan, and C. Hill, "Trackless surgery using focused ultrasound: Technique and case report," Min. Inv. Ther. 1, 13-15 (1991).
[CrossRef]

Mol. Imaging (2)

H. Zhao, T. Doyle, O. Coquoz, F. Kalish, B. Rice, and C. Contag, "Spectral characterization of Firefly-, Click Beetle- and Renilla- luciferase in mammalian cells and living mice," inMol. Imaging 3(3) (2004).

C. Kuo, O. Coquoz, T. Troy, D. Zwarg, and B. Rice, "Bioluminescent tomography for in vivo localization and quantification of luminescent sources from a multiple-view imaging system," Mol. Imaging 4, 370 (2005).

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. Wang, and R. Weissleder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef] [PubMed]

Nat. Med. (2)

R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo." Nat. Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. lett. (1)

Phys. Med. Biol (1)

G. Alexandrakis, F. Rannou, and A. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol 50, 4225-4241 (2005).
[CrossRef] [PubMed]

Phys. Med. Biol. (5)

A. Chaudhari, F. Darvas, J. Bading, R. Moats, P. Conti,  and et al, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005).
[CrossRef] [PubMed]

D. Arora, D. Cooley, T. Perry, M. Skliar, and R. Roemer, "Direct thermal dose control of constrained focused ultrasound treatments: phantom and in vivo evaluation," Phys. Med. Biol. 50, 1919-1935 (2005).
[CrossRef] [PubMed]

K. Ju, L. Tseng, Y. Chen, and W. Lin, "Investigation of a scanned cylindrical ultrasound system for breast hyperthermia," Phys. Med. Biol. 51, 539-555 (2006).
[CrossRef] [PubMed]

P. Novak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a Small Animal Hyperthermia Ultrasound System (SAHUS): Report on 83 Tumors," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef] [PubMed]

P. Vovak, E. Moros, J. Parry, B. Rogers, R. Myerson, A. Zeug, J. Locke, R. Rossin, W. Straube, and A. Singh, "Experience with a small animal hyperthermia ultrasound system (SAHUS): report on 83 tumours," Phys. Med. Biol. 50, 5127-5139 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

S. Hobbs, W. Monsky, F. Yuan, W. Roberts, L. Griffith, V. Torchilin, and R. Jain, "Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment," Proc. Natl. Acad. Sci. USA 95, 4607-4612 (1998).
[CrossRef] [PubMed]

Proc. SPIE (2)

M. Jiang and G. Wang, "Image reconstruction for bioluminescence tomography," Proc. SPIE 5535, 335-351 (2004).
[CrossRef]

W. Cong, D. Kumar, Y. Liu, A. Cong, and G. Wang, "A practical method to determine the light source distribution in bioluminescent imaging," Proc. SPIE 5535, 679-686 (2004).
[CrossRef]

Radiology (1)

G. Wang, E. Hoffman, G. McLennan, L. Wang, M. Suter, and J. Meinel, "Development of the first bioluminescent CT scanner," Radiology 229, 566 (2003).

Science (2)

E. Zerhouni, "Medicine. The NIH Roadmap," Science 302(5642), 63-72 (2003).
[CrossRef] [PubMed]

W. Fry, J. B. F. Fry, R. Krumins, and J. Brennan, "Ultrasonic lesions in the mammalian central nervous system," Science 122, 517-518 (1955).
[CrossRef] [PubMed]

Ultrasound Med. Biol. (2)

R. Apfel and C. Holland, "Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound," Ultrasound Med. Biol. 17, 179-85 (1991).
[CrossRef] [PubMed]

F. Foster and J. Hunt, "Transmission of ultrasound beams through human tissue-focusing and attenuation studies," Ultrasound Med. Biol. 5, 257-268 (1979).
[CrossRef] [PubMed]

Other (12)

H. Bowman, Thermodynamics of tissue heating: modeling and measurements for temperature distributions Physics Aspect of Hyperthermia ed G H Nussbaum (American Institute of Physics, New York 511-48, 1982).

V. Tuchin., Tissue Optics: Light scattering methods and Instruments for medical Diagnosis (SPIE, Bellingham, WA, 2000).

G. Wang, Y. Li, and M. Jiang, "Computational optical biopsy methods, techniques and apparatus," Patent disclosure filed with Univ. of Iowa Research Foundation in Dec. 2003; provisional patent filed in 2004.

A. Welch and M. van Gemert, Optical Thermal Response of Laser-Irradiated Tissue (Plenum Press, New York, 1995).

C. Church, "The effects of an elastic solid-surface layer on the radial pulsations of gas-bubbles," J. Acoust. Soc. Am. (97).
[PubMed]

A. Cong and G. Wang, "Multi-spectral bioluminescence tomography: Methodology and simulation," Int’l J. of Biomed. Imaging pp. 1-7 (2006).
[CrossRef]

C. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, Oxford, 1995).

G. Wang, H. Shen, W. Cong, S. Zhao, and G. Wei, "Temperature-modulated bioluminescence tomography," Patent disclosure filed with the University of Iowa Research Foundation. University of Iowa (2006).

H. Zhao, T. Doyle, O. Coquoz, F. Kalish, B. Rice, and C. Contag, "Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo," J. Biomed. Opt. 10(4), 041,210 (2005).
[CrossRef]

L. Frizzell, "Threshold dosages for damage to mammalian liver by high-intensity focused ultrasound," IEEE T. Ultrason. Ferroelectr. Freq. Contral (1998).

A. Williams, Ultrasound: Biological effects and potential hazards (Medical Physics Series 1983, Academic Press, London, 1983).

<jrn>. W. Chen and S. Holm, "Modified Szabo wave equation models for lossy media obeying frequency power law," J. Acoust. Soc. Am. (2003).</jrn>
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Spectra of FLuc at 25°C, 29°C, 33°C and 37°C (data from [20] with permission).

Fig. 2.
Fig. 2.

The cylindrical ultrasound transducer array system. The surface of each transducer is a part of a large sphere of radius R, centered at the origin of the coordinate system.

Fig. 3.
Fig. 3.

Plots of the Q distribution on the plane z = 0 for ω= 1.5 kg m-3 s-1, R = 5 cm and d = 0.635 cm. (a) f = 1, Nt = 17; (b) f = 2, Nt = 29; (c) f = 3, Nt = 41.

Fig. 4.
Fig. 4.

Plots of the Q distribution on the plane z = 0 with different Nt values for f = 2 MHz, w= 1.5 kg m-3 s-1, R = 5 cm, and d = 1.27 cm. (a) Nt = 11, (b) Nt = 19, and (c) Nt = 29.

Fig. 5.
Fig. 5.

Plots of the Q distribution on the plane z = 0 with different R values for f = 2 MHz, ω= 1.5 kg m-3 s-1, d = 0.635 cm, and Nt = 29. (a) R = 4 cm, (b) R = 5 cm, and (c) R = 6 cm.

Fig. 6.
Fig. 6.

Plots of the Q distribution on the plane z = 0 with different d values for f = 2MHz, ω= 1.5 kg m-3 s-1, R = 6 cm and Nt = 29. (a) d = 0.635 cm and (b) d = 1.27 cm.

Fig. 7.
Fig. 7.

Plots of the T distribution on the plane z = 0 with different W values for f = 2 MHz, ω= 1.5 kg m-3 s-1, R = 4 cm and d = 0.635 cm. (a) W = 0.008 w and (b) W = 0.016 w.

Fig. 8.
Fig. 8.

Plots of the T distribution on the plane z = 0 with different ω values for f = 2 MHz, R = 4 cm and d = 0.635 cm. (a) ω= 0.5 kg m-3 s-1, W = 0.018w and (b) ω = 3.5 kg m-3 s-1, W = 0.025 w.

Fig. 9.
Fig. 9.

Longitudinal extent of the Q distribution over the plane x = 0. (a) Surface plot and (b) a contour plot for f = 2 MHz, ω = 1.5 kg m-3 s-1, R = 4 cm, d = 0.635 cm and Nt = 29.

Fig. 10.
Fig. 10.

Longitudinal extent of the T distribution over the plane x = 0. (a) Surface plot and (b) a contour plot for f = 2 MHz, ω = 1.5 kg m-3 s-1, R = 4 cm, d = 0.635 cm, and Nt = 29.

Fig. 11.
Fig. 11.

Finite element model of the mouse chest phantom.

Fig. 12.
Fig. 12.

Optical data on the side surface of the finite-element phantom containing one bioluminescent source. (a) Original optical data, and (b) the corresponding difference data.

Fig. 13.
Fig. 13.

Optical data on the side surface of the finite-element phantom containing two bioluminescent sources. (a) Original optical data, (b) the corresponding difference data, (c) an oblique section showing the source locations (red), reconstructed source localtion (blue) and a heated region (green), and (d) an oblique section showing the photon density distribution. Sources 1 and 2 were inside and outside the heated volume, respectively.

Tables (6)

Tables Icon

Table 1. Percents of energy in each spectral band along with the normalized total energy at different temperatures (The data from 25°C to 39°C are from [20, 21] with permission). The data at 41°C are from our extrapolation. The total energy is normalized by the total energy at 37°C.

Tables Icon

Table 2. Recommended control parameters for f = 1 MHz.

Tables Icon

Table 3. Recommended control parameters for f = 2 MHz.

Tables Icon

Table 4. Recommended control parameters for f = 3 MHz.

Tables Icon

Table 5. Optical parameters of various anatomical structures in different spectral bands.

Tables Icon

Table 6. Simulated TBT results in the cases of single and double sources from spectrally mixed and multi-spectral datasets in terms of source localization and power estimation errors.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

p ( x ) = iρc λ S u e ( α + ik ) x x x x dS ,
p ( x ) = m = 1 N t ( iρc h x h y λ ) n = 1 N u n L n e ( α + ik ) L n sin c k x n h x 2 L n sin c k y n h y 2 L n
ρ c t T t = κ 2 T c b ω ( T T a ) + Q ,
q = α p 2 ρc ,
κ 2 T c b ω ( T T a ) + Q = 0 .
{ ( D ( x ) Φ ( x ) ) + μ a ( x ) Φ ( x ) = S ( x ) ( x Ω ) D ( x ) = ( 3 ( μ a ( x ) + ( 1 g ) μ s ( x ) ) ) 1 Φ ( x ) + 2 A x n n D ( x ) ( v ( x ) Φ ( x ) ) = 0 ( x Ω )
Q ( x ) = D ( x ) ( v Φ ( x ) ) = Φ ( x ) ( 2 A x n n ) ( x Ω )
[ M ] { Φ } = [ F ] { S } .
[ M 1,1 M 1,2 M 1,2 T M 2,2 ] { Φ ˜ Φ * } = [ F 1,1 F 1,2 F 2,1 F 2,2 ] { S p S * } ,
Φ ˜ = B S p ,
O ( S p ) = ( Φ ˜ Φ m ) T W ( Φ ˜ Φ m ) + εη ( S p ) ,
Φ ˜ λ i = B λ i S λ i p .
O M ( S p ) = i = 1 n ( ( Φ ˜ λ i Φ λ i m ) T W λ i ( Φ ˜ λ i Φ λ i m ) + ε λ i η λ i ( S λ i p ) ) ,
[ w λ 1 P 1 w λ 1 P k w λ n P 1 w λ n P k ] [ X 1 X k ] = [ ( S λ 1 p ) T ( S λ n p ) T ]
Φ ˜ λ i = w λ i B λ i S p , and
O M ( S p ) = i = 1 n ( ( Φ ˜ λ i Φ λ i m ) T W λ i ( Φ ˜ λ i Φ λ i m ) + ε λ i η λ i ( S p ) ) ,
Φ ˜ = i = 1 n w λ i B λ i S I p + i = 1 n w λ i B λ i S O p ,
Φ ˜ H = t i = 1 n w λ i B λ i S I p + i = 1 n w λ i B λ i S O p ,
Φ ˜ D = Φ ˜ H Φ ˜ = i = 1 n ( t w λ i w λ i ) B λ i S I p .
O ( S I p ) = ( Φ ̃ D Φ D m ) T W ( Φ ˜ D Φ D m ) + εη ( S I p ) ,
Φ ˜ λ i = w λ i B λ i S I p + w λ i B λ i S O p .
Φ ˜ H , λ i = tw λ i B λ i S I p + w λ i B λ i S O p .
Φ ˜ D , λ i = Φ ˜ H , λ i Φ ̃ λ i = ( t w λ i w λ i ) B λ i S I p , and
O M ( S I p ) = i = 1 n ( ( Φ ˜ D , λ i Φ D , λ i m ) T W λ i ( Φ ˜ D , λ i Φ D , λ i m ) + ε λ i η λ i ( S I p ) ) ,

Metrics