Abstract

A Multimode nonlinear optical imaging technique based on the combination of multichannel mode and Lambda mode is developed to investigate human dermis. Our findings show that this technique not only improves the image contrast of the structural proteins of extracellular matrix (ECM) but also provides an image-guided spectral analysis method to identify both cellular and ECM intrinsic components including collagen, elastin, NAD(P)H and flavin. By the combined use of multichannel mode and Lambda mode in tandem, the obtained in-depth two photon-excited fluorescence (TPEF) and second-harmonic generation (SHG) imaging and TPEF/SHG signals depth-dependence decay can offer a sensitive tool for obtaining quantitative tissue structural and biochemical information. These results suggest that the technique has the potential to provide more accurate information for determining tissue physiological and pathological states.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
    [CrossRef] [PubMed]
  2. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100, 7075-7080 (2003).
    [CrossRef] [PubMed]
  3. P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003).
    [CrossRef] [PubMed]
  4. M. Han, G. Giese, and J. F. Bille, "Second harmonic generation imaging of collagen fibrils in cornea and sclera," Opt. Express. 13, 5791-5797 (2005).
    [CrossRef] [PubMed]
  5. R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005).
    [CrossRef]
  6. A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Natl. Acad. Sci. USA. 99, 11014-11019 (2002).
    [CrossRef] [PubMed]
  7. E. Brown, T McKee. E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, "Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation," Nat. Med. 9, 796-800 (2003).
    [CrossRef] [PubMed]
  8. D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, "Optical recording of action potentials with second-harmonic generation microscopy," J. Neurosci. 24,999-1003 (2004).
    [CrossRef] [PubMed]
  9. P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341-3349 (1999).
    [CrossRef] [PubMed]
  10. P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, "Second-harmonic imaging microscopy of living cells," J. Biomed. Opt. 6, 227-286 (2001).
    [CrossRef]
  11. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohle, "Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
    [CrossRef]
  12. Y. C. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, "Subsurface tumor progression investigated by noninvasive optical second harmonic tomography," Proc. Natl. Acad. Sci. USA. 96, 10854-10856 (1999).
    [CrossRef] [PubMed]
  13. R. K. Rebecca and S. M. Eva, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996).
    [CrossRef]
  14. I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. C. Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. V. Dam, and M. S. Feld, "NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes," Cancer Res. 62, 682-687(2002).
    [PubMed]
  15. Y. Wu, P. Xi, J. Y. Qu, T. H. Cheung, and M. Y. Yu, "Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue," Opt. Express. 13,382-388 (2005).
    [CrossRef] [PubMed]
  16. M. C. Skala, J. M. Squirrell, K.M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, "Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous," Cancer. Res. 65, 1180-1186 (2005).
    [CrossRef] [PubMed]
  17. L. H. Laiho, S. Plete, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, "Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra," J. Biomed. Opt. 10, 0240161-10 (2005).
    [CrossRef] [PubMed]
  18. B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. D. Silva, "Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity," Lasers Surg. Med. 27, 329-335 (2000).
    [CrossRef] [PubMed]
  19. S. J. Lin, R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee, and C. Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy," Opt. Lett. 17, 2275-2277 (2005).
    [CrossRef]
  20. A. T. Yeh, M. J. Hammer-Wilson, D. C. V. Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg and G. M. Peavy, "Nonlinear optical microscopy of articular cartilage," Osteoarthritis and Cartilage. 13, 345-352 (2005).
    [CrossRef] [PubMed]
  21. H. S. Lee, Y. Liu, H. C. Chen, L. L. Chiou, G. T. Huang, W. Lo, and C. Y. Dong, "Optical biopsy of liver fibrosis by use of multiphoton microscopy," Opt. Lett. 29, 2615-2616 (2004).
    [CrossRef]
  22. J. Condeelis and J. E. Segall, "Intravital imaging of cell movement in tumours," Nat. Rev. 3, 921-930 (2003).
    [CrossRef]
  23. D. Y. Li, B. Brooke, E. C. Davis, R. P. Mecham, L. K. Sorensen, B. B. Boak, E. Eichwald, and M. T. Keating, "Elastin is an essential determinant of arterial morphogenesis," Nature  393, 276-280 (1998).
    [CrossRef] [PubMed]
  24. L. Debelle and A. M. Tamburro, "Elastin: molecular description and function," Int. J. Biochem. Cell. Biol. 31, 261-272 (1999).
    [CrossRef] [PubMed]
  25. A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, "Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy," Biophys. J. 87, 2278-2286 (2004).
    [CrossRef]
  26. Y. C. Wu and J. A. Y. Qu, "Two-photon autofluorescence spectroscopy and second-harmonic generation of epithelial tissue," Opt. Lett. 30, 3045-3047 (2005).
    [CrossRef] [PubMed]
  27. S. Huang, A. A. Heikal, and W. W. Webb, "Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein," Biophys. J. 82, 2811-2825 (2002).
    [CrossRef] [PubMed]
  28. B. R. Masters, P. T. C. So, and E. Gratton, "Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin," Biophys. J. 72, 2405-2412 (1997).
    [CrossRef] [PubMed]
  29. P. Theer, M. T. Hasan, and W. Denk, "Two-photon imaging to a depth of 1000 microns in living brains by use of a Ti:Al203 regenerative amplifier," Opt. Lett. 28, 1022-1024 (2003).
    [CrossRef] [PubMed]
  30. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4057-4514 (1991).
  31. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, "Influence of optical properties on two-photon fluorescence imaging in turbid samples," Appl. Opt. 39, 1194-1201 (2000).
    [CrossRef]
  32. P. T. Fwua, W. Loa, and C. Y. Dong, "Refractive index determination from multiphoton and confocal spherical aberration microscopy," in Multiphoton Microscopy in the Biomedical Sciences V, A. Periasamy and P. T. C. So, eds., Proc. SPIE. 5700, 70-77 (2005).
    [CrossRef]
  33. T. Collier, D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum, "Determination of epithelial tissue scattering coefficient using confocal microscopy," IEEE J. Sel. Top. Quantum Electron. 9, 307-313 (2003).
    [CrossRef]
  34. L. Moreaux, O. Saadre, and J. Mertz, "Membrane imaging by second-harmonic generation microscopy," J. Opt. Soc. Am B  17, 1685-1694 (2000).
    [CrossRef]
  35. T. Gutsmann, G. E. Fantner, and M. Venturoni, "Evidence that collagen fibrils in tendons are inhomogeneously structured in a tubelike manner," Biophys. J. 84, 2593-2598 (2003).
    [CrossRef] [PubMed]

2005 (8)

M. Han, G. Giese, and J. F. Bille, "Second harmonic generation imaging of collagen fibrils in cornea and sclera," Opt. Express. 13, 5791-5797 (2005).
[CrossRef] [PubMed]

R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

Y. Wu, P. Xi, J. Y. Qu, T. H. Cheung, and M. Y. Yu, "Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue," Opt. Express. 13,382-388 (2005).
[CrossRef] [PubMed]

M. C. Skala, J. M. Squirrell, K.M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, "Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous," Cancer. Res. 65, 1180-1186 (2005).
[CrossRef] [PubMed]

L. H. Laiho, S. Plete, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, "Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra," J. Biomed. Opt. 10, 0240161-10 (2005).
[CrossRef] [PubMed]

S. J. Lin, R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee, and C. Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy," Opt. Lett. 17, 2275-2277 (2005).
[CrossRef]

A. T. Yeh, M. J. Hammer-Wilson, D. C. V. Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg and G. M. Peavy, "Nonlinear optical microscopy of articular cartilage," Osteoarthritis and Cartilage. 13, 345-352 (2005).
[CrossRef] [PubMed]

Y. C. Wu and J. A. Y. Qu, "Two-photon autofluorescence spectroscopy and second-harmonic generation of epithelial tissue," Opt. Lett. 30, 3045-3047 (2005).
[CrossRef] [PubMed]

2004 (3)

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, "Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy," Biophys. J. 87, 2278-2286 (2004).
[CrossRef]

H. S. Lee, Y. Liu, H. C. Chen, L. L. Chiou, G. T. Huang, W. Lo, and C. Y. Dong, "Optical biopsy of liver fibrosis by use of multiphoton microscopy," Opt. Lett. 29, 2615-2616 (2004).
[CrossRef]

D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, "Optical recording of action potentials with second-harmonic generation microscopy," J. Neurosci. 24,999-1003 (2004).
[CrossRef] [PubMed]

2003 (8)

E. Brown, T McKee. E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, "Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation," Nat. Med. 9, 796-800 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100, 7075-7080 (2003).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003).
[CrossRef] [PubMed]

J. Condeelis and J. E. Segall, "Intravital imaging of cell movement in tumours," Nat. Rev. 3, 921-930 (2003).
[CrossRef]

T. Collier, D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum, "Determination of epithelial tissue scattering coefficient using confocal microscopy," IEEE J. Sel. Top. Quantum Electron. 9, 307-313 (2003).
[CrossRef]

T. Gutsmann, G. E. Fantner, and M. Venturoni, "Evidence that collagen fibrils in tendons are inhomogeneously structured in a tubelike manner," Biophys. J. 84, 2593-2598 (2003).
[CrossRef] [PubMed]

P. Theer, M. T. Hasan, and W. Denk, "Two-photon imaging to a depth of 1000 microns in living brains by use of a Ti:Al203 regenerative amplifier," Opt. Lett. 28, 1022-1024 (2003).
[CrossRef] [PubMed]

2002 (4)

S. Huang, A. A. Heikal, and W. W. Webb, "Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein," Biophys. J. 82, 2811-2825 (2002).
[CrossRef] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohle, "Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
[CrossRef]

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. C. Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. V. Dam, and M. S. Feld, "NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes," Cancer Res. 62, 682-687(2002).
[PubMed]

A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Natl. Acad. Sci. USA. 99, 11014-11019 (2002).
[CrossRef] [PubMed]

2001 (1)

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, "Second-harmonic imaging microscopy of living cells," J. Biomed. Opt. 6, 227-286 (2001).
[CrossRef]

2000 (3)

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. D. Silva, "Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity," Lasers Surg. Med. 27, 329-335 (2000).
[CrossRef] [PubMed]

L. Moreaux, O. Saadre, and J. Mertz, "Membrane imaging by second-harmonic generation microscopy," J. Opt. Soc. Am B  17, 1685-1694 (2000).
[CrossRef]

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, "Influence of optical properties on two-photon fluorescence imaging in turbid samples," Appl. Opt. 39, 1194-1201 (2000).
[CrossRef]

1999 (3)

L. Debelle and A. M. Tamburro, "Elastin: molecular description and function," Int. J. Biochem. Cell. Biol. 31, 261-272 (1999).
[CrossRef] [PubMed]

Y. C. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, "Subsurface tumor progression investigated by noninvasive optical second harmonic tomography," Proc. Natl. Acad. Sci. USA. 96, 10854-10856 (1999).
[CrossRef] [PubMed]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

1998 (1)

D. Y. Li, B. Brooke, E. C. Davis, R. P. Mecham, L. K. Sorensen, B. B. Boak, E. Eichwald, and M. T. Keating, "Elastin is an essential determinant of arterial morphogenesis," Nature  393, 276-280 (1998).
[CrossRef] [PubMed]

1997 (1)

B. R. Masters, P. T. C. So, and E. Gratton, "Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin," Biophys. J. 72, 2405-2412 (1997).
[CrossRef] [PubMed]

1996 (1)

R. K. Rebecca and S. M. Eva, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef]

1991 (1)

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4057-4514 (1991).

Alfano, R. R.

Y. C. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, "Subsurface tumor progression investigated by noninvasive optical second harmonic tomography," Proc. Natl. Acad. Sci. USA. 96, 10854-10856 (1999).
[CrossRef] [PubMed]

Arifler, D.

T. Collier, D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum, "Determination of epithelial tissue scattering coefficient using confocal microscopy," IEEE J. Sel. Top. Quantum Electron. 9, 307-313 (2003).
[CrossRef]

Badizadegan, K.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. C. Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. V. Dam, and M. S. Feld, "NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes," Cancer Res. 62, 682-687(2002).
[PubMed]

Benton, H. P.

A. T. Yeh, M. J. Hammer-Wilson, D. C. V. Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg and G. M. Peavy, "Nonlinear optical microscopy of articular cartilage," Osteoarthritis and Cartilage. 13, 345-352 (2005).
[CrossRef] [PubMed]

Berns, M. W.

Bille, J. F.

M. Han, G. Giese, and J. F. Bille, "Second harmonic generation imaging of collagen fibrils in cornea and sclera," Opt. Express. 13, 5791-5797 (2005).
[CrossRef] [PubMed]

Blanchard-Desce, M.

D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, "Optical recording of action potentials with second-harmonic generation microscopy," J. Neurosci. 24,999-1003 (2004).
[CrossRef] [PubMed]

Boak, B. B.

D. Y. Li, B. Brooke, E. C. Davis, R. P. Mecham, L. K. Sorensen, B. B. Boak, E. Eichwald, and M. T. Keating, "Elastin is an essential determinant of arterial morphogenesis," Nature  393, 276-280 (1998).
[CrossRef] [PubMed]

Boone, C. W.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. C. Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. V. Dam, and M. S. Feld, "NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes," Cancer Res. 62, 682-687(2002).
[PubMed]

Brooke, B.

D. Y. Li, B. Brooke, E. C. Davis, R. P. Mecham, L. K. Sorensen, B. B. Boak, E. Eichwald, and M. T. Keating, "Elastin is an essential determinant of arterial morphogenesis," Nature  393, 276-280 (1998).
[CrossRef] [PubMed]

Brown, E.

E. Brown, T McKee. E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, "Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation," Nat. Med. 9, 796-800 (2003).
[CrossRef] [PubMed]

Campagnola, P. J.

P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003).
[CrossRef] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohle, "Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
[CrossRef]

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, "Second-harmonic imaging microscopy of living cells," J. Biomed. Opt. 6, 227-286 (2001).
[CrossRef]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

Chen, H. C.

H. S. Lee, Y. Liu, H. C. Chen, L. L. Chiou, G. T. Huang, W. Lo, and C. Y. Dong, "Optical biopsy of liver fibrosis by use of multiphoton microscopy," Opt. Lett. 29, 2615-2616 (2004).
[CrossRef]

Chen, J. S.

S. J. Lin, R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee, and C. Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy," Opt. Lett. 17, 2275-2277 (2005).
[CrossRef]

Cheung, T. H.

Y. Wu, P. Xi, J. Y. Qu, T. H. Cheung, and M. Y. Yu, "Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue," Opt. Express. 13,382-388 (2005).
[CrossRef] [PubMed]

Chiou, L. L.

H. S. Lee, Y. Liu, H. C. Chen, L. L. Chiou, G. T. Huang, W. Lo, and C. Y. Dong, "Optical biopsy of liver fibrosis by use of multiphoton microscopy," Opt. Lett. 29, 2615-2616 (2004).
[CrossRef]

Christie, R.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100, 7075-7080 (2003).
[CrossRef] [PubMed]

Clark, H. A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, "Second-harmonic imaging microscopy of living cells," J. Biomed. Opt. 6, 227-286 (2001).
[CrossRef]

Coleno, M.

Collier, T.

T. Collier, D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum, "Determination of epithelial tissue scattering coefficient using confocal microscopy," IEEE J. Sel. Top. Quantum Electron. 9, 307-313 (2003).
[CrossRef]

Condeelis, J.

J. Condeelis and J. E. Segall, "Intravital imaging of cell movement in tumours," Nat. Rev. 3, 921-930 (2003).
[CrossRef]

Crum, C. P.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. C. Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. V. Dam, and M. S. Feld, "NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes," Cancer Res. 62, 682-687(2002).
[PubMed]

Dam, J. V.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. C. Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. V. Dam, and M. S. Feld, "NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes," Cancer Res. 62, 682-687(2002).
[PubMed]

Dasari, R. R.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. C. Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. V. Dam, and M. S. Feld, "NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes," Cancer Res. 62, 682-687(2002).
[PubMed]

Davis, E. C.

D. Y. Li, B. Brooke, E. C. Davis, R. P. Mecham, L. K. Sorensen, B. B. Boak, E. Eichwald, and M. T. Keating, "Elastin is an essential determinant of arterial morphogenesis," Nature  393, 276-280 (1998).
[CrossRef] [PubMed]

Debelle, L.

L. Debelle and A. M. Tamburro, "Elastin: molecular description and function," Int. J. Biochem. Cell. Biol. 31, 261-272 (1999).
[CrossRef] [PubMed]

Denk, W.

Dombeck, D. A.

D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, "Optical recording of action potentials with second-harmonic generation microscopy," J. Neurosci. 24,999-1003 (2004).
[CrossRef] [PubMed]

Dong, C. Y.

S. J. Lin, R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee, and C. Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy," Opt. Lett. 17, 2275-2277 (2005).
[CrossRef]

H. S. Lee, Y. Liu, H. C. Chen, L. L. Chiou, G. T. Huang, W. Lo, and C. Y. Dong, "Optical biopsy of liver fibrosis by use of multiphoton microscopy," Opt. Lett. 29, 2615-2616 (2004).
[CrossRef]

Dunn, A. K.

Eichler, J.

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. D. Silva, "Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity," Lasers Surg. Med. 27, 329-335 (2000).
[CrossRef] [PubMed]

Eichwald, E.

D. Y. Li, B. Brooke, E. C. Davis, R. P. Mecham, L. K. Sorensen, B. B. Boak, E. Eichwald, and M. T. Keating, "Elastin is an essential determinant of arterial morphogenesis," Nature  393, 276-280 (1998).
[CrossRef] [PubMed]

Eickhoff, J. C.

M. C. Skala, J. M. Squirrell, K.M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, "Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous," Cancer. Res. 65, 1180-1186 (2005).
[CrossRef] [PubMed]

Eliceiri, K. W.

M. C. Skala, J. M. Squirrell, K.M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, "Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous," Cancer. Res. 65, 1180-1186 (2005).
[CrossRef] [PubMed]

Eva, S. M.

R. K. Rebecca and S. M. Eva, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef]

Fantner, G. E.

T. Gutsmann, G. E. Fantner, and M. Venturoni, "Evidence that collagen fibrils in tendons are inhomogeneously structured in a tubelike manner," Biophys. J. 84, 2593-2598 (2003).
[CrossRef] [PubMed]

Feld, M. S.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. C. Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. V. Dam, and M. S. Feld, "NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes," Cancer Res. 62, 682-687(2002).
[PubMed]

Follen, M.

T. Collier, D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum, "Determination of epithelial tissue scattering coefficient using confocal microscopy," IEEE J. Sel. Top. Quantum Electron. 9, 307-313 (2003).
[CrossRef]

Gendron-Fitzpatrick, A.

M. C. Skala, J. M. Squirrell, K.M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, "Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous," Cancer. Res. 65, 1180-1186 (2005).
[CrossRef] [PubMed]

Georgakoudi, I.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. C. Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. V. Dam, and M. S. Feld, "NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes," Cancer Res. 62, 682-687(2002).
[PubMed]

Giese, G.

M. Han, G. Giese, and J. F. Bille, "Second harmonic generation imaging of collagen fibrils in cornea and sclera," Opt. Express. 13, 5791-5797 (2005).
[CrossRef] [PubMed]

Gratton, E.

B. R. Masters, P. T. C. So, and E. Gratton, "Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin," Biophys. J. 72, 2405-2412 (1997).
[CrossRef] [PubMed]

Guo, Y. C.

Y. C. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, "Subsurface tumor progression investigated by noninvasive optical second harmonic tomography," Proc. Natl. Acad. Sci. USA. 96, 10854-10856 (1999).
[CrossRef] [PubMed]

Gutsmann, T.

T. Gutsmann, G. E. Fantner, and M. Venturoni, "Evidence that collagen fibrils in tendons are inhomogeneously structured in a tubelike manner," Biophys. J. 84, 2593-2598 (2003).
[CrossRef] [PubMed]

Hammer-Wilson, M. J.

A. T. Yeh, M. J. Hammer-Wilson, D. C. V. Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg and G. M. Peavy, "Nonlinear optical microscopy of articular cartilage," Osteoarthritis and Cartilage. 13, 345-352 (2005).
[CrossRef] [PubMed]

Han, M.

M. Han, G. Giese, and J. F. Bille, "Second harmonic generation imaging of collagen fibrils in cornea and sclera," Opt. Express. 13, 5791-5797 (2005).
[CrossRef] [PubMed]

Hancewicz, T. M.

L. H. Laiho, S. Plete, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, "Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra," J. Biomed. Opt. 10, 0240161-10 (2005).
[CrossRef] [PubMed]

Hasan, M. T.

Heikal, A. A.

S. Huang, A. A. Heikal, and W. W. Webb, "Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein," Biophys. J. 82, 2811-2825 (2002).
[CrossRef] [PubMed]

Ho, P. P.

Y. C. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, "Subsurface tumor progression investigated by noninvasive optical second harmonic tomography," Proc. Natl. Acad. Sci. USA. 96, 10854-10856 (1999).
[CrossRef] [PubMed]

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohle, "Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
[CrossRef]

Hsu, C. J.

S. J. Lin, R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee, and C. Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy," Opt. Lett. 17, 2275-2277 (2005).
[CrossRef]

Huang, G. T.

H. S. Lee, Y. Liu, H. C. Chen, L. L. Chiou, G. T. Huang, W. Lo, and C. Y. Dong, "Optical biopsy of liver fibrosis by use of multiphoton microscopy," Opt. Lett. 29, 2615-2616 (2004).
[CrossRef]

Huang, S.

S. Huang, A. A. Heikal, and W. W. Webb, "Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein," Biophys. J. 82, 2811-2825 (2002).
[CrossRef] [PubMed]

Hyman, B. T.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100, 7075-7080 (2003).
[CrossRef] [PubMed]

Jacobson, B. C.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. C. Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. V. Dam, and M. S. Feld, "NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes," Cancer Res. 62, 682-687(2002).
[PubMed]

Jee, S. H.

S. J. Lin, R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee, and C. Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy," Opt. Lett. 17, 2275-2277 (2005).
[CrossRef]

Kaplan, P. D.

L. H. Laiho, S. Plete, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, "Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra," J. Biomed. Opt. 10, 0240161-10 (2005).
[CrossRef] [PubMed]

Kassab, G. S.

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, "Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy," Biophys. J. 87, 2278-2286 (2004).
[CrossRef]

Keating, M. T.

D. Y. Li, B. Brooke, E. C. Davis, R. P. Mecham, L. K. Sorensen, B. B. Boak, E. Eichwald, and M. T. Keating, "Elastin is an essential determinant of arterial morphogenesis," Nature  393, 276-280 (1998).
[CrossRef] [PubMed]

Kim, B. M.

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. D. Silva, "Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity," Lasers Surg. Med. 27, 329-335 (2000).
[CrossRef] [PubMed]

Laiho, L. H.

L. H. Laiho, S. Plete, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, "Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra," J. Biomed. Opt. 10, 0240161-10 (2005).
[CrossRef] [PubMed]

Lee, H. S.

H. S. Lee, Y. Liu, H. C. Chen, L. L. Chiou, G. T. Huang, W. Lo, and C. Y. Dong, "Optical biopsy of liver fibrosis by use of multiphoton microscopy," Opt. Lett. 29, 2615-2616 (2004).
[CrossRef]

Lewis, A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, "Second-harmonic imaging microscopy of living cells," J. Biomed. Opt. 6, 227-286 (2001).
[CrossRef]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

Li, D. Y.

D. Y. Li, B. Brooke, E. C. Davis, R. P. Mecham, L. K. Sorensen, B. B. Boak, E. Eichwald, and M. T. Keating, "Elastin is an essential determinant of arterial morphogenesis," Nature  393, 276-280 (1998).
[CrossRef] [PubMed]

Lin, S. J.

S. J. Lin, R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee, and C. Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy," Opt. Lett. 17, 2275-2277 (2005).
[CrossRef]

Lin, W. C.

S. J. Lin, R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee, and C. Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy," Opt. Lett. 17, 2275-2277 (2005).
[CrossRef]

Liu, F.

Y. C. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, "Subsurface tumor progression investigated by noninvasive optical second harmonic tomography," Proc. Natl. Acad. Sci. USA. 96, 10854-10856 (1999).
[CrossRef] [PubMed]

Liu, Y.

H. S. Lee, Y. Liu, H. C. Chen, L. L. Chiou, G. T. Huang, W. Lo, and C. Y. Dong, "Optical biopsy of liver fibrosis by use of multiphoton microscopy," Opt. Lett. 29, 2615-2616 (2004).
[CrossRef]

Lo, W.

S. J. Lin, R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee, and C. Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy," Opt. Lett. 17, 2275-2277 (2005).
[CrossRef]

H. S. Lee, Y. Liu, H. C. Chen, L. L. Chiou, G. T. Huang, W. Lo, and C. Y. Dong, "Optical biopsy of liver fibrosis by use of multiphoton microscopy," Opt. Lett. 29, 2615-2616 (2004).
[CrossRef]

Locke, D. L. C.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. C. Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. V. Dam, and M. S. Feld, "NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes," Cancer Res. 62, 682-687(2002).
[PubMed]

Loew, L. M.

P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003).
[CrossRef] [PubMed]

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, "Second-harmonic imaging microscopy of living cells," J. Biomed. Opt. 6, 227-286 (2001).
[CrossRef]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

Lu, X.

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, "Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy," Biophys. J. 87, 2278-2286 (2004).
[CrossRef]

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohle, "Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
[CrossRef]

Malpica, A.

T. Collier, D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum, "Determination of epithelial tissue scattering coefficient using confocal microscopy," IEEE J. Sel. Top. Quantum Electron. 9, 307-313 (2003).
[CrossRef]

Masters, B. R.

B. R. Masters, P. T. C. So, and E. Gratton, "Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin," Biophys. J. 72, 2405-2412 (1997).
[CrossRef] [PubMed]

McKee, T

E. Brown, T McKee. E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, "Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation," Nat. Med. 9, 796-800 (2003).
[CrossRef] [PubMed]

Mecham, R. P.

D. Y. Li, B. Brooke, E. C. Davis, R. P. Mecham, L. K. Sorensen, B. B. Boak, E. Eichwald, and M. T. Keating, "Elastin is an essential determinant of arterial morphogenesis," Nature  393, 276-280 (1998).
[CrossRef] [PubMed]

Mertz, J.

L. Moreaux, O. Saadre, and J. Mertz, "Membrane imaging by second-harmonic generation microscopy," J. Opt. Soc. Am B  17, 1685-1694 (2000).
[CrossRef]

Millard, A. C.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohle, "Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
[CrossRef]

Moes, C. J. M.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4057-4514 (1991).

Mohle, W. A.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohle, "Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
[CrossRef]

Mohler, W. A.

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, "Second-harmonic imaging microscopy of living cells," J. Biomed. Opt. 6, 227-286 (2001).
[CrossRef]

Moreaux, L.

L. Moreaux, O. Saadre, and J. Mertz, "Membrane imaging by second-harmonic generation microscopy," J. Opt. Soc. Am B  17, 1685-1694 (2000).
[CrossRef]

Muller, M. G.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. C. Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. V. Dam, and M. S. Feld, "NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes," Cancer Res. 62, 682-687(2002).
[PubMed]

Nikitin, A. Y.

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100, 7075-7080 (2003).
[CrossRef] [PubMed]

Peavy, G. M.

A. T. Yeh, M. J. Hammer-Wilson, D. C. V. Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg and G. M. Peavy, "Nonlinear optical microscopy of articular cartilage," Osteoarthritis and Cartilage. 13, 345-352 (2005).
[CrossRef] [PubMed]

Plete, S.

L. H. Laiho, S. Plete, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, "Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra," J. Biomed. Opt. 10, 0240161-10 (2005).
[CrossRef] [PubMed]

Prahl, S. A.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4057-4514 (1991).

Qu, J. A. Y.

Qu, J. Y.

Y. Wu, P. Xi, J. Y. Qu, T. H. Cheung, and M. Y. Yu, "Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue," Opt. Express. 13,382-388 (2005).
[CrossRef] [PubMed]

Ramanujam, N.

M. C. Skala, J. M. Squirrell, K.M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, "Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous," Cancer. Res. 65, 1180-1186 (2005).
[CrossRef] [PubMed]

Rebecca, R. K.

R. K. Rebecca and S. M. Eva, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef]

Reiser, K. M.

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. D. Silva, "Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity," Lasers Surg. Med. 27, 329-335 (2000).
[CrossRef] [PubMed]

Richards-Kortum, R.

T. Collier, D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum, "Determination of epithelial tissue scattering coefficient using confocal microscopy," IEEE J. Sel. Top. Quantum Electron. 9, 307-313 (2003).
[CrossRef]

Rubenchik, A. M.

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. D. Silva, "Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity," Lasers Surg. Med. 27, 329-335 (2000).
[CrossRef] [PubMed]

Saadre, O.

L. Moreaux, O. Saadre, and J. Mertz, "Membrane imaging by second-harmonic generation microscopy," J. Opt. Soc. Am B  17, 1685-1694 (2000).
[CrossRef]

Savage, H. E.

Y. C. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, "Subsurface tumor progression investigated by noninvasive optical second harmonic tomography," Proc. Natl. Acad. Sci. USA. 96, 10854-10856 (1999).
[CrossRef] [PubMed]

Schantz, S. P.

Y. C. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, "Subsurface tumor progression investigated by noninvasive optical second harmonic tomography," Proc. Natl. Acad. Sci. USA. 96, 10854-10856 (1999).
[CrossRef] [PubMed]

Segall, J. E.

J. Condeelis and J. E. Segall, "Intravital imaging of cell movement in tumours," Nat. Rev. 3, 921-930 (2003).
[CrossRef]

Sheets, E. E.

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. C. Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. V. Dam, and M. S. Feld, "NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes," Cancer Res. 62, 682-687(2002).
[PubMed]

Sickle, D. C. V.

A. T. Yeh, M. J. Hammer-Wilson, D. C. V. Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg and G. M. Peavy, "Nonlinear optical microscopy of articular cartilage," Osteoarthritis and Cartilage. 13, 345-352 (2005).
[CrossRef] [PubMed]

Silva, L. B. D.

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. D. Silva, "Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity," Lasers Surg. Med. 27, 329-335 (2000).
[CrossRef] [PubMed]

Skala, M. C.

M. C. Skala, J. M. Squirrell, K.M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, "Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous," Cancer. Res. 65, 1180-1186 (2005).
[CrossRef] [PubMed]

So, P. T. C.

L. H. Laiho, S. Plete, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, "Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra," J. Biomed. Opt. 10, 0240161-10 (2005).
[CrossRef] [PubMed]

B. R. Masters, P. T. C. So, and E. Gratton, "Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin," Biophys. J. 72, 2405-2412 (1997).
[CrossRef] [PubMed]

Sorensen, L. K.

D. Y. Li, B. Brooke, E. C. Davis, R. P. Mecham, L. K. Sorensen, B. B. Boak, E. Eichwald, and M. T. Keating, "Elastin is an essential determinant of arterial morphogenesis," Nature  393, 276-280 (1998).
[CrossRef] [PubMed]

Squirrell, J. M.

M. C. Skala, J. M. Squirrell, K.M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, "Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous," Cancer. Res. 65, 1180-1186 (2005).
[CrossRef] [PubMed]

Tamburro, A. M.

L. Debelle and A. M. Tamburro, "Elastin: molecular description and function," Int. J. Biochem. Cell. Biol. 31, 261-272 (1999).
[CrossRef] [PubMed]

Tan, H. Y.

S. J. Lin, R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee, and C. Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy," Opt. Lett. 17, 2275-2277 (2005).
[CrossRef]

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohle, "Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
[CrossRef]

Theer, P.

Tromberg, B. J.

A. T. Yeh, M. J. Hammer-Wilson, D. C. V. Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg and G. M. Peavy, "Nonlinear optical microscopy of articular cartilage," Osteoarthritis and Cartilage. 13, 345-352 (2005).
[CrossRef] [PubMed]

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, "Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy," Biophys. J. 87, 2278-2286 (2004).
[CrossRef]

A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Natl. Acad. Sci. USA. 99, 11014-11019 (2002).
[CrossRef] [PubMed]

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, "Influence of optical properties on two-photon fluorescence imaging in turbid samples," Appl. Opt. 39, 1194-1201 (2000).
[CrossRef]

van Gemert, M. J. C.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4057-4514 (1991).

van Marie, J.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4057-4514 (1991).

van Staveren, H. J.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4057-4514 (1991).

Venturoni, M.

T. Gutsmann, G. E. Fantner, and M. Venturoni, "Evidence that collagen fibrils in tendons are inhomogeneously structured in a tubelike manner," Biophys. J. 84, 2593-2598 (2003).
[CrossRef] [PubMed]

Vrotsos, K.M.

M. C. Skala, J. M. Squirrell, K.M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, "Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous," Cancer. Res. 65, 1180-1186 (2005).
[CrossRef] [PubMed]

Wallace, V. P.

Webb, W. W.

R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, "Optical recording of action potentials with second-harmonic generation microscopy," J. Neurosci. 24,999-1003 (2004).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100, 7075-7080 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

S. Huang, A. A. Heikal, and W. W. Webb, "Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein," Biophys. J. 82, 2811-2825 (2002).
[CrossRef] [PubMed]

Wei, M. D.

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

Williams, R. M.

R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100, 7075-7080 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

Wu, R. J.

S. J. Lin, R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee, and C. Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy," Opt. Lett. 17, 2275-2277 (2005).
[CrossRef]

Wu, Y.

Y. Wu, P. Xi, J. Y. Qu, T. H. Cheung, and M. Y. Yu, "Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue," Opt. Express. 13,382-388 (2005).
[CrossRef] [PubMed]

Wu, Y. C.

Xi, P.

Y. Wu, P. Xi, J. Y. Qu, T. H. Cheung, and M. Y. Yu, "Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue," Opt. Express. 13,382-388 (2005).
[CrossRef] [PubMed]

Yeh, A.

A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Natl. Acad. Sci. USA. 99, 11014-11019 (2002).
[CrossRef] [PubMed]

Yeh, A. T.

A. T. Yeh, M. J. Hammer-Wilson, D. C. V. Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg and G. M. Peavy, "Nonlinear optical microscopy of articular cartilage," Osteoarthritis and Cartilage. 13, 345-352 (2005).
[CrossRef] [PubMed]

Young, T. H.

S. J. Lin, R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee, and C. Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy," Opt. Lett. 17, 2275-2277 (2005).
[CrossRef]

Yu, M. Y.

Y. Wu, P. Xi, J. Y. Qu, T. H. Cheung, and M. Y. Yu, "Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue," Opt. Express. 13,382-388 (2005).
[CrossRef] [PubMed]

Zipfel, W. R.

R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100, 7075-7080 (2003).
[CrossRef] [PubMed]

Zoumi, A.

A. T. Yeh, M. J. Hammer-Wilson, D. C. V. Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg and G. M. Peavy, "Nonlinear optical microscopy of articular cartilage," Osteoarthritis and Cartilage. 13, 345-352 (2005).
[CrossRef] [PubMed]

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, "Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy," Biophys. J. 87, 2278-2286 (2004).
[CrossRef]

A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Natl. Acad. Sci. USA. 99, 11014-11019 (2002).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

R. K. Rebecca and S. M. Eva, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef]

Appl. Opt. (2)

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in intralipid-10% in the wavelength range of 400-1100 nm," Appl. Opt. 30, 4057-4514 (1991).

A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, "Influence of optical properties on two-photon fluorescence imaging in turbid samples," Appl. Opt. 39, 1194-1201 (2000).
[CrossRef]

Biophys. J. (7)

S. Huang, A. A. Heikal, and W. W. Webb, "Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein," Biophys. J. 82, 2811-2825 (2002).
[CrossRef] [PubMed]

B. R. Masters, P. T. C. So, and E. Gratton, "Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin," Biophys. J. 72, 2405-2412 (1997).
[CrossRef] [PubMed]

T. Gutsmann, G. E. Fantner, and M. Venturoni, "Evidence that collagen fibrils in tendons are inhomogeneously structured in a tubelike manner," Biophys. J. 84, 2593-2598 (2003).
[CrossRef] [PubMed]

A. Zoumi, X. Lu, G. S. Kassab, and B. J. Tromberg, "Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy," Biophys. J. 87, 2278-2286 (2004).
[CrossRef]

R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005).
[CrossRef]

P. J. Campagnola, M. D. Wei, A. Lewis, and L. M. Loew, "High-resolution nonlinear optical imaging of live cells by second harmonic generation," Biophys. J. 77, 3341-3349 (1999).
[CrossRef] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohle, "Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002).
[CrossRef]

Cancer Res. (1)

I. Georgakoudi, B. C. Jacobson, M. G. Muller, E. E. Sheets, K. Badizadegan, D. L. C. Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. V. Dam, and M. S. Feld, "NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes," Cancer Res. 62, 682-687(2002).
[PubMed]

Cancer. Res. (1)

M. C. Skala, J. M. Squirrell, K.M. Vrotsos, J. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, "Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous," Cancer. Res. 65, 1180-1186 (2005).
[CrossRef] [PubMed]

IEEE J.Sel.Top. Quantum Electron. (1)

T. Collier, D. Arifler, A. Malpica, M. Follen, and R. Richards-Kortum, "Determination of epithelial tissue scattering coefficient using confocal microscopy," IEEE J. Sel. Top. Quantum Electron. 9, 307-313 (2003).
[CrossRef]

Int. J. Biochem. Cell. Biol. (1)

L. Debelle and A. M. Tamburro, "Elastin: molecular description and function," Int. J. Biochem. Cell. Biol. 31, 261-272 (1999).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

L. H. Laiho, S. Plete, T. M. Hancewicz, P. D. Kaplan, and P. T. C. So, "Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra," J. Biomed. Opt. 10, 0240161-10 (2005).
[CrossRef] [PubMed]

P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, "Second-harmonic imaging microscopy of living cells," J. Biomed. Opt. 6, 227-286 (2001).
[CrossRef]

J. Neurosci. (1)

D. A. Dombeck, M. Blanchard-Desce, and W. W. Webb, "Optical recording of action potentials with second-harmonic generation microscopy," J. Neurosci. 24,999-1003 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am B (1)

L. Moreaux, O. Saadre, and J. Mertz, "Membrane imaging by second-harmonic generation microscopy," J. Opt. Soc. Am B  17, 1685-1694 (2000).
[CrossRef]

Lasers Surg. Med. (1)

B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. D. Silva, "Collagen structure and nonlinear susceptibility: effects of heat, glycation, and enzymatic cleavage on second harmonic signal intensity," Lasers Surg. Med. 27, 329-335 (2000).
[CrossRef] [PubMed]

Nat. Biotechnol. (2)

W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, "Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nat. Biotechnol. 21, 1356-1360 (2003).
[CrossRef] [PubMed]

Nat. Med. (1)

E. Brown, T McKee. E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, "Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation," Nat. Med. 9, 796-800 (2003).
[CrossRef] [PubMed]

Nat.Rev. (1)

J. Condeelis and J. E. Segall, "Intravital imaging of cell movement in tumours," Nat. Rev. 3, 921-930 (2003).
[CrossRef]

Nature. (1)

D. Y. Li, B. Brooke, E. C. Davis, R. P. Mecham, L. K. Sorensen, B. B. Boak, E. Eichwald, and M. T. Keating, "Elastin is an essential determinant of arterial morphogenesis," Nature  393, 276-280 (1998).
[CrossRef] [PubMed]

Opt. Express. (2)

Y. Wu, P. Xi, J. Y. Qu, T. H. Cheung, and M. Y. Yu, "Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue," Opt. Express. 13,382-388 (2005).
[CrossRef] [PubMed]

M. Han, G. Giese, and J. F. Bille, "Second harmonic generation imaging of collagen fibrils in cornea and sclera," Opt. Express. 13, 5791-5797 (2005).
[CrossRef] [PubMed]

Opt. Lett. (4)

S. J. Lin, R. J. Wu, H. Y. Tan, W. Lo, W. C. Lin, T. H. Young, C. J. Hsu, J. S. Chen, S. H. Jee, and C. Y. Dong, "Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy," Opt. Lett. 17, 2275-2277 (2005).
[CrossRef]

H. S. Lee, Y. Liu, H. C. Chen, L. L. Chiou, G. T. Huang, W. Lo, and C. Y. Dong, "Optical biopsy of liver fibrosis by use of multiphoton microscopy," Opt. Lett. 29, 2615-2616 (2004).
[CrossRef]

Y. C. Wu and J. A. Y. Qu, "Two-photon autofluorescence spectroscopy and second-harmonic generation of epithelial tissue," Opt. Lett. 30, 3045-3047 (2005).
[CrossRef] [PubMed]

P. Theer, M. T. Hasan, and W. Denk, "Two-photon imaging to a depth of 1000 microns in living brains by use of a Ti:Al203 regenerative amplifier," Opt. Lett. 28, 1022-1024 (2003).
[CrossRef] [PubMed]

Osteoarthritis and Cartilage. (1)

A. T. Yeh, M. J. Hammer-Wilson, D. C. V. Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg and G. M. Peavy, "Nonlinear optical microscopy of articular cartilage," Osteoarthritis and Cartilage. 13, 345-352 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA. (3)

Y. C. Guo, H. E. Savage, F. Liu, S. P. Schantz, P. P. Ho, and R. R. Alfano, "Subsurface tumor progression investigated by noninvasive optical second harmonic tomography," Proc. Natl. Acad. Sci. USA. 96, 10854-10856 (1999).
[CrossRef] [PubMed]

W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA. 100, 7075-7080 (2003).
[CrossRef] [PubMed]

A. Zoumi, A. Yeh, and B. J. Tromberg, "Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence," Proc. Natl. Acad. Sci. USA. 99, 11014-11019 (2002).
[CrossRef] [PubMed]

Other (1)

P. T. Fwua, W. Loa, and C. Y. Dong, "Refractive index determination from multiphoton and confocal spherical aberration microscopy," in Multiphoton Microscopy in the Biomedical Sciences V, A. Periasamy and P. T. C. So, eds., Proc. SPIE. 5700, 70-77 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of multimode nonlinear optical imaging experimental setup.

Fig. 2.
Fig. 2.

TPEF/SHG nonlinear imaging of human dermis using the multichannel mode. The images were acquired by using two independent-channels: (a) Typical SHG image (green color-coded, 387 – 409nm) for excitation power PSHG = 6.0mW. The signal mainly arises from collagen and (b) TPEF image (red color-coded, 447 – 628nm) for PTPEF = 2.6mW. Elastin, NAD(P)H and flavin are responsible for the signals. (c) TPEF/SHG image was obtained by overlaying two channels, in which the contrast has been enhanced to outline the various structures seen in the image. The excitation wavelength λex was 800nm. The images are 135×315 pixels in size 12-bit pixel depth.

Fig. 3.
Fig. 3.

TPEF/SHG images obtained from human dermis at various depths using the multichannel mode. A dissected sample of human dermis was optically sectioned through its full thickness of ~60μm. (a) Graphic representation of the image volume of tissue. xy (top), yz (left), and xz (right) sections from the boundaries of the volume are shown. Note that dimensions are indicated, and are not portrayed proportionally. (b–h) TPEF/SHG images of human dermis at depths of 0, 10, 20, 30, 40, 50 and 60 μm. The images are 265×320 pixels in size 12-bit pixel depth. Scale bar = 20μm. (λex = 800nm, PSHG = 6.0mW, PTPEF = 2.6mW).

Fig. 4.
Fig. 4.

The spectral resolved TPEF/SHG image of human dermis from the same region in Fig. 2 and the corresponding spectra from regions of interest (ROI). They simultaneously were obtained by using the Lambda mode. The image is 135×315 pixels in size 12-bit pixel depth. (λex = 800nm, P = 5mW)

Fig. 5.
Fig. 5.

Emission spectra obtained from human dermis at various depths using the Lambda mode. Each spectrum is the average of measurement acquired at the whole optical section plane. (a)SHG and TPEF spectra obtained at depths of 0, 20, 40, 60μm. (b) Integrated total intensity of SHG and TPEF spectra versus penetration depth. (c, d)Plot of the natural logarithm of SHG and TPEF integrated total intensity versus penetration depth, Z, respectively. Error bars represent calculated standard deviations. (λex=830nm, P = 5mW).

Tables (1)

Tables Icon

Table 1. System parameters of two independent-channels in the multihannel mode

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( I ) z = ( I ) 0 exp ( Az )

Metrics