Abstract

The nonlinear absorption coefficient of As2S3 glass has been measured to be 2.0 cm/GW for femtosecond pulses at 800 nm. Femtosecond laser structuring via two photon absorption in bulk As2S3 glass by erasable and permanent photo-darkening is demonstrated using both holographic and direct multi-beam laser writing.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Valee, "Direct femtosecond laser writing of waveguides in As2S3 thin films," Opt. Lett. 29, 748 - 750 (2004).
    [CrossRef] [PubMed]
  2. J.-F. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," IEEE J. Lightwave Technol. 17, 1184 - 1191 (1999).
    [CrossRef]
  3. A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low loss waveguides in ultrafast laser deposited As2S3 chalcogenide films," J. Opt. Soc. Am. B 20, 1844 - 1852 (2003).
    [CrossRef]
  4. A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, "Nonlinear as-s chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation," Appl. Surf. Sci. 197-198, 481 - 485 (2002).
    [CrossRef]
  5. C. B. Schaffer, J. Garcia, and E. Mazur, "Bulk heating of transparent materials using a high-repetition rate femtosecond laser," Appl. Phys. A 76, 351 - 354 (2003).
    [CrossRef]
  6. S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, "Recording and reading of three-dimensional optical memory in glasses," Appl. Phys. B 77, 361-368 (2003).
    [CrossRef]
  7. T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "A novel femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
    [CrossRef]
  8. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional recording by femtosecond pulses in polymer materials," J. Photopolym. Sci. Technol. 16, 427-432 (2003).
    [CrossRef]
  9. B. K. Rhee, J. S. Byun, and E. W. VanStryland, "Z scan using circularly symmetric beams," J. Opt. Soc. Am. B 13, 2720 - 2723 (1996).
    [CrossRef]
  10. M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearites using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  11. S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683 - 685 (2004).
    [CrossRef]

2004 (2)

S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683 - 685 (2004).
[CrossRef]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Valee, "Direct femtosecond laser writing of waveguides in As2S3 thin films," Opt. Lett. 29, 748 - 750 (2004).
[CrossRef] [PubMed]

2003 (4)

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low loss waveguides in ultrafast laser deposited As2S3 chalcogenide films," J. Opt. Soc. Am. B 20, 1844 - 1852 (2003).
[CrossRef]

C. B. Schaffer, J. Garcia, and E. Mazur, "Bulk heating of transparent materials using a high-repetition rate femtosecond laser," Appl. Phys. A 76, 351 - 354 (2003).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, "Recording and reading of three-dimensional optical memory in glasses," Appl. Phys. B 77, 361-368 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional recording by femtosecond pulses in polymer materials," J. Photopolym. Sci. Technol. 16, 427-432 (2003).
[CrossRef]

2002 (1)

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, "Nonlinear as-s chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation," Appl. Surf. Sci. 197-198, 481 - 485 (2002).
[CrossRef]

2001 (1)

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "A novel femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

1999 (1)

J.-F. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," IEEE J. Lightwave Technol. 17, 1184 - 1191 (1999).
[CrossRef]

1996 (1)

1990 (1)

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearites using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Byun, J. S.

Cardinal, T.

J.-F. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," IEEE J. Lightwave Technol. 17, 1184 - 1191 (1999).
[CrossRef]

Charters, R. B.

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, "Nonlinear as-s chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation," Appl. Surf. Sci. 197-198, 481 - 485 (2002).
[CrossRef]

Duguay, M.

J.-F. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," IEEE J. Lightwave Technol. 17, 1184 - 1191 (1999).
[CrossRef]

Galstian, T.

J.-F. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," IEEE J. Lightwave Technol. 17, 1184 - 1191 (1999).
[CrossRef]

Gamaly, E. G.

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, "Recording and reading of three-dimensional optical memory in glasses," Appl. Phys. B 77, 361-368 (2003).
[CrossRef]

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, "Nonlinear as-s chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation," Appl. Surf. Sci. 197-198, 481 - 485 (2002).
[CrossRef]

Garcia, J.

C. B. Schaffer, J. Garcia, and E. Mazur, "Bulk heating of transparent materials using a high-repetition rate femtosecond laser," Appl. Phys. A 76, 351 - 354 (2003).
[CrossRef]

Hagan, D. J.

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearites using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Juodkazis, S.

S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683 - 685 (2004).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional recording by femtosecond pulses in polymer materials," J. Photopolym. Sci. Technol. 16, 427-432 (2003).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, "Recording and reading of three-dimensional optical memory in glasses," Appl. Phys. B 77, 361-368 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "A novel femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

Knystautas, E.

J.-F. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," IEEE J. Lightwave Technol. 17, 1184 - 1191 (1999).
[CrossRef]

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional recording by femtosecond pulses in polymer materials," J. Photopolym. Sci. Technol. 16, 427-432 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "A novel femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

Lopez, C.

Luther-Davies, B.

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low loss waveguides in ultrafast laser deposited As2S3 chalcogenide films," J. Opt. Soc. Am. B 20, 1844 - 1852 (2003).
[CrossRef]

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, "Nonlinear as-s chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation," Appl. Surf. Sci. 197-198, 481 - 485 (2002).
[CrossRef]

Matsuo, S.

S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683 - 685 (2004).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional recording by femtosecond pulses in polymer materials," J. Photopolym. Sci. Technol. 16, 427-432 (2003).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, "Recording and reading of three-dimensional optical memory in glasses," Appl. Phys. B 77, 361-368 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "A novel femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

Mazur, E.

C. B. Schaffer, J. Garcia, and E. Mazur, "Bulk heating of transparent materials using a high-repetition rate femtosecond laser," Appl. Phys. A 76, 351 - 354 (2003).
[CrossRef]

Meneghini, C.

J.-F. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," IEEE J. Lightwave Technol. 17, 1184 - 1191 (1999).
[CrossRef]

Misawa, H.

S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683 - 685 (2004).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional recording by femtosecond pulses in polymer materials," J. Photopolym. Sci. Technol. 16, 427-432 (2003).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, "Recording and reading of three-dimensional optical memory in glasses," Appl. Phys. B 77, 361-368 (2003).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "A novel femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

Mizeikis, V.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional recording by femtosecond pulses in polymer materials," J. Photopolym. Sci. Technol. 16, 427-432 (2003).
[CrossRef]

Rhee, B. K.

Richardson, K.

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Valee, "Direct femtosecond laser writing of waveguides in As2S3 thin films," Opt. Lett. 29, 748 - 750 (2004).
[CrossRef] [PubMed]

J.-F. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," IEEE J. Lightwave Technol. 17, 1184 - 1191 (1999).
[CrossRef]

Richardson, M.

Rivero, C.

Rode, A. V.

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low loss waveguides in ultrafast laser deposited As2S3 chalcogenide films," J. Opt. Soc. Am. B 20, 1844 - 1852 (2003).
[CrossRef]

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, "Recording and reading of three-dimensional optical memory in glasses," Appl. Phys. B 77, 361-368 (2003).
[CrossRef]

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, "Nonlinear as-s chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation," Appl. Surf. Sci. 197-198, 481 - 485 (2002).
[CrossRef]

Ruan, Y.

Said, A. A.

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearites using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Samoc, M.

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low loss waveguides in ultrafast laser deposited As2S3 chalcogenide films," J. Opt. Soc. Am. B 20, 1844 - 1852 (2003).
[CrossRef]

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, "Nonlinear as-s chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation," Appl. Surf. Sci. 197-198, 481 - 485 (2002).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, J. Garcia, and E. Mazur, "Bulk heating of transparent materials using a high-repetition rate femtosecond laser," Appl. Phys. A 76, 351 - 354 (2003).
[CrossRef]

Schulte, A.

Sheikh-Bahae, M.

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearites using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Van Stryland, E. W.

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearites using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

VanStryland, E. W.

Viens, J.-F.

J.-F. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," IEEE J. Lightwave Technol. 17, 1184 - 1191 (1999).
[CrossRef]

Villeneuve, A.

J.-F. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," IEEE J. Lightwave Technol. 17, 1184 - 1191 (1999).
[CrossRef]

Wei, T.

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearites using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Zakery, A.

A. Zakery, Y. Ruan, A. V. Rode, M. Samoc, and B. Luther-Davies, "Low loss waveguides in ultrafast laser deposited As2S3 chalcogenide films," J. Opt. Soc. Am. B 20, 1844 - 1852 (2003).
[CrossRef]

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, "Nonlinear as-s chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation," Appl. Surf. Sci. 197-198, 481 - 485 (2002).
[CrossRef]

Zoubir, A.

Appl. Phys. A (2)

C. B. Schaffer, J. Garcia, and E. Mazur, "Bulk heating of transparent materials using a high-repetition rate femtosecond laser," Appl. Phys. A 76, 351 - 354 (2003).
[CrossRef]

S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683 - 685 (2004).
[CrossRef]

Appl. Phys. B (1)

S. Juodkazis, A. V. Rode, E. G. Gamaly, S. Matsuo, and H. Misawa, "Recording and reading of three-dimensional optical memory in glasses," Appl. Phys. B 77, 361-368 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, "A novel femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals," Appl. Phys. Lett. 79, 725-727 (2001).
[CrossRef]

Appl. Surf. Sci. (1)

A. V. Rode, A. Zakery, M. Samoc, R. B. Charters, E. G. Gamaly, and B. Luther-Davies, "Nonlinear as-s chalcogenide films for optical waveguide writing deposited by high-repetition-rate laser ablation," Appl. Surf. Sci. 197-198, 481 - 485 (2002).
[CrossRef]

IEEE J. Lightwave Technol. (1)

J.-F. Viens, C. Meneghini, A. Villeneuve, T. Galstian, E. Knystautas, M. Duguay, K. Richardson, and T. Cardinal, "Fabrication and characterization of integrated optical waveguides in sulfide chalcogenide glasses," IEEE J. Lightwave Technol. 17, 1184 - 1191 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearites using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Photopolym. Sci. Technol. (1)

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Three-dimensional recording by femtosecond pulses in polymer materials," J. Photopolym. Sci. Technol. 16, 427-432 (2003).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic setup based on diffractive optical element (DOE) for holographic (with sample position (1)) and direct multi-beam recording (sample position (2)), respectively.

Fig. 2.
Fig. 2.

Z-scan measurements. (a) A set of open aperture Z-scans at 820 nm for the following light intensities: 14.5, 7.2, 3.0, 2.1, 1.22 and 0.839 GW/cm2. (b) Numerical fit of transmission, T, for the intensity of 0.839 GW/cm2. (c) Wavelength dependence of the two-photon absorption coefficient; line is an exponential fit given as an eyeguide.

Fig. 3.
Fig. 3.

Calculated normalized light intensity distribution of 4 (a) and 5 (b) beams (assumed to be plane waves) hologram. The angle between side beams and optical axis was θ=33.8°; the ratio of E-fields of interfering beams was (1:1:1:1) and (1:1:1: 1 : 4(central)) for 4 and 5-beams, respectively. The lateral pattern (xy-cross-section) of recording beams is shown as insets. The lateral periods are given by d = √2λ/(2sinθ) (4-beams) d = λ/ sinθ (5-beams) and the axial d = λ/(1- cos θ) (5-beams), where θthe angle between the side beam and optical axis.

Fig. 4.
Fig. 4.

Optical transmission images of four (a) and five (b) beams holograms and their Fourier transform images: numerical (upper inset) and by diffraction readout by 632 nm laser light (lower inset). Theoretical period was 1.02 μm (4-beams) and 1.45 μm (5-beams). Holograms were recorded by a 5 min exposure to the 3 μ J/pulse (at 1 kHz repetition rate) pulses of 800 nm wavelength and 150 fs duration. Area of pattern 0.7 mm at 20 μm depth; angle of focusing was 33.6°.

Fig. 5.
Fig. 5.

(a) Diffraction pattern of HeNe laser beam on the grating recorded by direct multi-beam (with 31 inline beams) laser writing. (b) Optical image of the grating in As2S3 glass.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( r ) = n , m E n e i ( k n ∙r + δ n ) E m * e i ( k m ∙r + δ m ) ,

Metrics