Abstract

We present a fabrication method for the monolithic integration of microfluidic channels into semiconductor laser material. Lasers are designed to couple directly into the microfluidic channel, allowing submerged particles pass through the output beams of the lasers. The interaction between particles in the channel and the lasers, operated in either forward or reverse bias, allows for particle detection, and the optical forces can be used to trap and move particles. Both interrogation and manipulation are made more amenable for lab-on-a-chip applications through monolithic integration. The devices are very small, they require no external optical components, have perfect intrinsic alignment, and can be created with virtually any planar configuration of lasers in order to perform a variety of tasks. Their operation requires no optical expertise and only low electrical power, thus making them suitable for computer interfacing and automation. Insulating the pn junctions from the fluid is the key challenge, which is overcome by using photo-definable SU8-2000 polymer.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Exp.,  14, 5779-5791 (2006).
    [CrossRef]
  2. P. L. Gourley, "Biocavity laser for high-speed cell and tumour biology," J. Phys. D: Appl. Phys. 36, R228-239(2003)
    [CrossRef]
  3. L. Paterson, B. Agate, M. Comrie, R. Ferguson, T. Lake, J. Morris, A. Carruthers, C. T. Brown, W. Sibbett, P. Bryant, F. Gunn-Moore, A. Riches, and Kishan Dholakiaet, "Photoporation and cell transfection using a violet diode laser," Opt. Express.,  13, 595-600 (2005).
    [CrossRef]
  4. A. Ashkin, J. M. Dziedzic and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature,  330, 769-771 (1987).
    [CrossRef] [PubMed]
  5. S. Cran-McGreehin, T. Krauss, and K. Dholakia, "Integrated monolithic optical manipulation," Lab-on-a-Chip, DOI: 10.1039/b605237a (2006).
  6. F. V. Ignatovich and L. Novotny, "Real-time and background-free detection of nanoscale particles," Phys. Rev. Lett. 96, 013901 (2006).
    [CrossRef] [PubMed]

2006

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Exp.,  14, 5779-5791 (2006).
[CrossRef]

F. V. Ignatovich and L. Novotny, "Real-time and background-free detection of nanoscale particles," Phys. Rev. Lett. 96, 013901 (2006).
[CrossRef] [PubMed]

2003

P. L. Gourley, "Biocavity laser for high-speed cell and tumour biology," J. Phys. D: Appl. Phys. 36, R228-239(2003)
[CrossRef]

1987

A. Ashkin, J. M. Dziedzic and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature,  330, 769-771 (1987).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin, J. M. Dziedzic and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature,  330, 769-771 (1987).
[CrossRef] [PubMed]

Dholakia, K.

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Exp.,  14, 5779-5791 (2006).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, J. M. Dziedzic and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature,  330, 769-771 (1987).
[CrossRef] [PubMed]

Garcés-Chávez, V.

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Exp.,  14, 5779-5791 (2006).
[CrossRef]

Gourley, P. L.

P. L. Gourley, "Biocavity laser for high-speed cell and tumour biology," J. Phys. D: Appl. Phys. 36, R228-239(2003)
[CrossRef]

Herrington, C. S.

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Exp.,  14, 5779-5791 (2006).
[CrossRef]

Ignatovich, F. V.

F. V. Ignatovich and L. Novotny, "Real-time and background-free detection of nanoscale particles," Phys. Rev. Lett. 96, 013901 (2006).
[CrossRef] [PubMed]

Jess, P. R. T.

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Exp.,  14, 5779-5791 (2006).
[CrossRef]

Mazilu, M.

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Exp.,  14, 5779-5791 (2006).
[CrossRef]

Novotny, L.

F. V. Ignatovich and L. Novotny, "Real-time and background-free detection of nanoscale particles," Phys. Rev. Lett. 96, 013901 (2006).
[CrossRef] [PubMed]

Paterson, L.

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Exp.,  14, 5779-5791 (2006).
[CrossRef]

Riches, A.

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Exp.,  14, 5779-5791 (2006).
[CrossRef]

Sibbett, W.

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Exp.,  14, 5779-5791 (2006).
[CrossRef]

Smith, D.

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Exp.,  14, 5779-5791 (2006).
[CrossRef]

Yamane, T.

A. Ashkin, J. M. Dziedzic and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature,  330, 769-771 (1987).
[CrossRef] [PubMed]

J. Phys. D: Appl. Phys.

P. L. Gourley, "Biocavity laser for high-speed cell and tumour biology," J. Phys. D: Appl. Phys. 36, R228-239(2003)
[CrossRef]

Nature

A. Ashkin, J. M. Dziedzic and T. Yamane, "Optical trapping and manipulation of single cells using infrared laser beams," Nature,  330, 769-771 (1987).
[CrossRef] [PubMed]

Opt. Exp.

P. R. T. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. S. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman micro-spectroscopy of single cells," Opt. Exp.,  14, 5779-5791 (2006).
[CrossRef]

Phys. Rev. Lett.

F. V. Ignatovich and L. Novotny, "Real-time and background-free detection of nanoscale particles," Phys. Rev. Lett. 96, 013901 (2006).
[CrossRef] [PubMed]

Other

S. Cran-McGreehin, T. Krauss, and K. Dholakia, "Integrated monolithic optical manipulation," Lab-on-a-Chip, DOI: 10.1039/b605237a (2006).

L. Paterson, B. Agate, M. Comrie, R. Ferguson, T. Lake, J. Morris, A. Carruthers, C. T. Brown, W. Sibbett, P. Bryant, F. Gunn-Moore, A. Riches, and Kishan Dholakiaet, "Photoporation and cell transfection using a violet diode laser," Opt. Express.,  13, 595-600 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Concept diagram of device. For ease of illustration, the large vertical beam divergence is not shown, and neither is the polymer insulation that lines the channel.

Fig. 2.
Fig. 2.

SEM images of lasers: (a) cross-section through a laser; (b) lasers facing one another across the channel; (c) close-up of facets and channel wall. Note that the channel insulation has not yet been added.

Fig. 3.
Fig. 3.

Photographs of channel with insulation: (a) plan view; (b) cross-sectional view.

Fig. 4.
Fig. 4.

Photographs of device: (a) mounted on PCB, with tubes leading to pump; (b) fine capillaries feed fluid beneath the glass lid, sealed with NOA-71, and electrical power is provided via wire-bonds from the circuit board

Fig. 5.
Fig. 5.

(a) P-I curves for a laser with and without SU8 on one facet; (b) ratio of powers from different facets

Fig. 6.
Fig. 6.

(a) Reduction of measured power when 2μm-diameter polymer sphere is trapped in the beampath; (b) reduction of photocurrent for one laser reverse biased when polymer spheres of different sizes are in the beampath.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P SU 8 P air = ( R 1 R 2 ) 1 2 ( 1 R 2 1 R 1 ) .

Metrics