Abstract

This study represents a first attempt to assess the detection capability of a fluorescence-enhanced optical imaging system as quantified by the Hotelling observer. The imaging system is simulated by the diffusion approximation of the time-dependent radiative transfer equation, which describes near infra-red (NIR) light propagation through a breast phantom of clinically relevant volume. Random structures in the background are introduced using a lumpy-object model as a representation of anatomical structure as well as non-uniform distribution of disease markers. The systematic errors and noise associated with the actual experimental conditions are incorporated into the simulated boundary measurements to acquire imaging data sets. A large number of imaging data sets is considered in order to perform Hotelling observer studies. We find that the signal-to-noise ratio (SNR) of Hotelling observer (i) decreases as the strength of lumpy perturbations in the background increases, (ii) decreases as the target depth increases, and (iii) increases as excitation light leakage decreases, and reaches a maximum for filter optical density values of 5 or higher.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
    [CrossRef] [PubMed]
  2. A. Godavarty, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, "Detection of single and multiple targets in tissue phantoms with fluorescence-enhanced optical imaging: feasibility study," Radiology 235, 148-154 (2005).
    [CrossRef] [PubMed]
  3. J. P. Rolland, and H. H. Barrett, "Effect of random background inhomogeneity on observer detection performance," J. Opt. Soc. Am. A 9, 649-658 (1992).
    [CrossRef] [PubMed]
  4. C. K. Abbey, and H. H. Barrett, "Human- and model- observer performance in ramp-spectrum noise: effects of regularization and object variability," J. Opt. Soc. Am. A 18, 473-488 (2001).
    [CrossRef]
  5. P. R. Bakic, M. Albert, D. Brzakovic, and A. D. A. Maidment, "Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation," Med. Phys. 29, 2131-2139 (2002).
    [CrossRef] [PubMed]
  6. A. R. Pineda, and H. H. Barrett, "Figures of merit for detectors in digital radiography. II. Finite number of secondaries and structured backgrounds," Med. Phys. 31, 359-367 (2004).
    [CrossRef] [PubMed]
  7. A. R. Pineda, H. H. Barrett, and S. R. Arridge, "Spatially varying detectability for the optical tomography," in Proceedings of SPIE Medical Imaging, Proc. SPIE 3977, 77-83 (2000).
    [CrossRef]
  8. A. K. Sahu, R. Roy, A. Joshi, and E. M. Sevick-Muraca, "Evaluation of anatomical structure and non-uniform distribution of imaging agent in near-infrared fluorescence-enhanced optical tomography," Opt. Express 13, 10182-10199 (2005), http://www.opticsexpress.org/abstract.cfm?id=86462.
    [CrossRef] [PubMed]
  9. H. C. Gifford, R. G. Wells, and M. A. King, "A comparison of human observer LROC and numerical observer ROC for tumor detection in SPECT images," IEEE Trans. Nucl. Sci. 46, 1032-1037 (1999).
    [CrossRef]
  10. C. Lartizien, P. E. Kinahan, and C. Comtat, "Volumetric model and human observer comparisons of tumor detection for whole-body positron emission tomography " Acad. Radiol. 11, 637-648 (2004).
    [CrossRef] [PubMed]
  11. S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, and G. T. Gullberg, "Evaluation of myocardial defect detection between parallel-hole and fan-beam SPECT using the Hotelling trace," IEEE Trans. Nucl. Sci. 45, 2205-2210 (1998).
    [CrossRef]
  12. M. Chen, J. E. Bowsher, A. H. Baydush, K. L. Gilland, D. M. DeLong, and R. J. Jaszczak, "Using the Hotelling observer on multislice and multiview simulated SPECT myocardial images," IEEE Trans. Nucl. Sci. 49, 661-667 (2002).
    [CrossRef]
  13. R. M. Gagne, B. D. Gallas, and K. J. Myers, "Toward objective and quantitative evaluation of imaging systems using images of phantoms," Med. Phys. 33, 83-95 (2005).
    [CrossRef]
  14. L. Chen, and H. H. Barrett, "Task-based lens design with application to digital mammography," J. Opt. Soc. Am. A 22, 148-167 (2005).
    [CrossRef]
  15. K. Cheong, and E. Clarkson, "Delectability study on OCT in the presence of speckle with Hotelling observer," Med. Phys. 32, 1915-1915 (2005).
    [CrossRef]
  16. C. L. Hutchinson, J. R. Lakowicz, and E. M. Sevick-Muraca, "Fluorescence lifetime-based sensing in tissues: a computational study," Biophys. J. 68, 1574-1582 (1995).
    [CrossRef] [PubMed]
  17. E. M. Sevick-Muraca, E. Kuwana, A. Godavarty, J. P. Houston, A. B. Thompson, and R. Roy, "Near infrared fluorescence imaging and spectroscopy in random media and tissues," Chapter 33 in Biomedical Photonics Handbook, CRC Press, ed. J. Vo-Dinh, (2003).
  18. A. R. P. Fortin, "Detection-theoretic evaluation in digital radiography and optical tomography," PhD Thesis, The University of Arizona, Tucson, AZ, 2002.
  19. M. A. Kupinski, E. Clarkson, J. W. Hoppin, L. Chen, and H. H. Barrett, "Experimental determination of object statistics from noisy images," J. Opt. Soc. Am. A. 20, 421-429 (2003).
    [CrossRef]
  20. S. Park, E. Clarkson, M. A. Kupinski, and H. H. Barrett, "Efficiency of the human observer detecting random signals in random backgrounds," J. Opt. Soc. Am. A. 22, 3-26 (2005).
    [CrossRef]
  21. K. Hwang, J. P. Houston, J. C. Rasmussen, A. Joshi, S. Ke, C. Li, and E. M. Sevick-Muraca, "Improved excitation light rejection enhances small-animal fluorescencent optical imaging," J. Mol. Imaging 4, 194-204 (2005).
  22. K. Hwang, and E. M. Sevick-Muraca, "Influence of excitation light rejection on forward model mismatch," Med. Phys. (in preparation.).
  23. Referring to the corpuscular nature of light.
  24. H. Lohinger, Teach/Me Data Analysis (Springer-Verlag, Berlin-New York-Tokyo, 1999).
  25. H. H. Barrett, and K. J. Myers, Foundations of Image Science (John Wiley & Sons, Inc., New Jersey, 2004).
  26. Arising from the instrumentation of the system.
  27. B. B. Glasgow, M. S. Glaser, and R. H. Whitley, "Remote imaging in the ultraviolet using intensified and nonintensified CCDs," Proc. SPIE 2173, 85-96 (1994).
    [CrossRef]
  28. E. J. Ientilucci, "Synthetic simulation and modeling of image intensified CCDs (IICCD)," PhD Thesis, Rochester Institute of Technology, Rochester, NY, 2000.
  29. In this context, the word "signal" means "the object being measured", unlike "the object being detected" in the target detection tasks.
  30. J. D. Sain, and H. H. Barrett, "Performance evaluation of a modular gamma using a detectability index," J. Nucl. Med. 44, 58-66 (2003).
    [PubMed]
  31. H. H. Barrett, "Objective assessment of image quality: effects of quantum noise and object variability," J. Opt. Soc. Am. A 7, 1266-1278 (1990).
    [CrossRef] [PubMed]
  32. M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, "3-D Bayesian optical imaging reconstruction with domain decomposition," IEEE Trans. Med. Imaging 20, 147-161 (2001).
    [CrossRef] [PubMed]
  33. W. A. Kalender, A. Polacin, and C. Suss, "A comparison of conventional and spiral CT - an experimental-study on the detection of spherical lesions," J. Comput. Assist. Tomo. 18, 167-176 (1994).
    [CrossRef]
  34. I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
    [CrossRef]
  35. R. M. L. Warren, and C. Hayes, "Localization of breast lesions shown only on MRI - a review for the UK study of MRI screening for breast cancer," Brit. J. Radiol. 73, 123-132 (2000).
    [PubMed]
  36. B. J. Tromberg, O. Coquoz, J. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Philos. Trans. Biol. Sciences 352, 661-668 (1997).
    [CrossRef]
  37. H. H. Barrett, J. L. Denny, R. F. Wagner, and K. J. Myers, "Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance," J. Opt. Soc. Am. A 12, 834-852 (1995).
    [CrossRef]
  38. H. H. Barrett, C. K. Abbey, and E. Clarkson, "Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihood-generating functions," J. Opt. Soc. Am. A 15, 1520-1535 (1998).
    [CrossRef]
  39. J. A. Swets, R. M. Dawes, and J. Monahan, "Psychological science can improve diagnostic decisions," Psych.Science Public Interest 1, 1-26 (2000).
    [CrossRef]
  40. H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, "Model observers for assessment of image quality," Proc. Natl. Acad. Sci. USA 90, 9758-9765 (1993).
    [CrossRef] [PubMed]
  41. H. H. Barrett, T. Gooley, K. Girodias, J. P. Rolland, T. White, and J. Yao, "Linear discriminants and image quality," Image Vision Comput. 10, 451-460 (1992).
    [CrossRef]

2005 (8)

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, "Detection of single and multiple targets in tissue phantoms with fluorescence-enhanced optical imaging: feasibility study," Radiology 235, 148-154 (2005).
[CrossRef] [PubMed]

A. K. Sahu, R. Roy, A. Joshi, and E. M. Sevick-Muraca, "Evaluation of anatomical structure and non-uniform distribution of imaging agent in near-infrared fluorescence-enhanced optical tomography," Opt. Express 13, 10182-10199 (2005), http://www.opticsexpress.org/abstract.cfm?id=86462.
[CrossRef] [PubMed]

R. M. Gagne, B. D. Gallas, and K. J. Myers, "Toward objective and quantitative evaluation of imaging systems using images of phantoms," Med. Phys. 33, 83-95 (2005).
[CrossRef]

L. Chen, and H. H. Barrett, "Task-based lens design with application to digital mammography," J. Opt. Soc. Am. A 22, 148-167 (2005).
[CrossRef]

K. Cheong, and E. Clarkson, "Delectability study on OCT in the presence of speckle with Hotelling observer," Med. Phys. 32, 1915-1915 (2005).
[CrossRef]

S. Park, E. Clarkson, M. A. Kupinski, and H. H. Barrett, "Efficiency of the human observer detecting random signals in random backgrounds," J. Opt. Soc. Am. A. 22, 3-26 (2005).
[CrossRef]

K. Hwang, J. P. Houston, J. C. Rasmussen, A. Joshi, S. Ke, C. Li, and E. M. Sevick-Muraca, "Improved excitation light rejection enhances small-animal fluorescencent optical imaging," J. Mol. Imaging 4, 194-204 (2005).

2004 (2)

C. Lartizien, P. E. Kinahan, and C. Comtat, "Volumetric model and human observer comparisons of tumor detection for whole-body positron emission tomography " Acad. Radiol. 11, 637-648 (2004).
[CrossRef] [PubMed]

A. R. Pineda, and H. H. Barrett, "Figures of merit for detectors in digital radiography. II. Finite number of secondaries and structured backgrounds," Med. Phys. 31, 359-367 (2004).
[CrossRef] [PubMed]

2003 (2)

M. A. Kupinski, E. Clarkson, J. W. Hoppin, L. Chen, and H. H. Barrett, "Experimental determination of object statistics from noisy images," J. Opt. Soc. Am. A. 20, 421-429 (2003).
[CrossRef]

J. D. Sain, and H. H. Barrett, "Performance evaluation of a modular gamma using a detectability index," J. Nucl. Med. 44, 58-66 (2003).
[PubMed]

2002 (2)

M. Chen, J. E. Bowsher, A. H. Baydush, K. L. Gilland, D. M. DeLong, and R. J. Jaszczak, "Using the Hotelling observer on multislice and multiview simulated SPECT myocardial images," IEEE Trans. Nucl. Sci. 49, 661-667 (2002).
[CrossRef]

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. A. Maidment, "Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation," Med. Phys. 29, 2131-2139 (2002).
[CrossRef] [PubMed]

2001 (2)

C. K. Abbey, and H. H. Barrett, "Human- and model- observer performance in ramp-spectrum noise: effects of regularization and object variability," J. Opt. Soc. Am. A 18, 473-488 (2001).
[CrossRef]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, "3-D Bayesian optical imaging reconstruction with domain decomposition," IEEE Trans. Med. Imaging 20, 147-161 (2001).
[CrossRef] [PubMed]

2000 (3)

R. M. L. Warren, and C. Hayes, "Localization of breast lesions shown only on MRI - a review for the UK study of MRI screening for breast cancer," Brit. J. Radiol. 73, 123-132 (2000).
[PubMed]

J. A. Swets, R. M. Dawes, and J. Monahan, "Psychological science can improve diagnostic decisions," Psych.Science Public Interest 1, 1-26 (2000).
[CrossRef]

A. R. Pineda, H. H. Barrett, and S. R. Arridge, "Spatially varying detectability for the optical tomography," in Proceedings of SPIE Medical Imaging, Proc. SPIE 3977, 77-83 (2000).
[CrossRef]

1999 (1)

H. C. Gifford, R. G. Wells, and M. A. King, "A comparison of human observer LROC and numerical observer ROC for tumor detection in SPECT images," IEEE Trans. Nucl. Sci. 46, 1032-1037 (1999).
[CrossRef]

1998 (2)

S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, and G. T. Gullberg, "Evaluation of myocardial defect detection between parallel-hole and fan-beam SPECT using the Hotelling trace," IEEE Trans. Nucl. Sci. 45, 2205-2210 (1998).
[CrossRef]

H. H. Barrett, C. K. Abbey, and E. Clarkson, "Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihood-generating functions," J. Opt. Soc. Am. A 15, 1520-1535 (1998).
[CrossRef]

1997 (1)

B. J. Tromberg, O. Coquoz, J. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Philos. Trans. Biol. Sciences 352, 661-668 (1997).
[CrossRef]

1996 (1)

I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
[CrossRef]

1995 (2)

1994 (2)

W. A. Kalender, A. Polacin, and C. Suss, "A comparison of conventional and spiral CT - an experimental-study on the detection of spherical lesions," J. Comput. Assist. Tomo. 18, 167-176 (1994).
[CrossRef]

B. B. Glasgow, M. S. Glaser, and R. H. Whitley, "Remote imaging in the ultraviolet using intensified and nonintensified CCDs," Proc. SPIE 2173, 85-96 (1994).
[CrossRef]

1993 (1)

H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, "Model observers for assessment of image quality," Proc. Natl. Acad. Sci. USA 90, 9758-9765 (1993).
[CrossRef] [PubMed]

1992 (2)

H. H. Barrett, T. Gooley, K. Girodias, J. P. Rolland, T. White, and J. Yao, "Linear discriminants and image quality," Image Vision Comput. 10, 451-460 (1992).
[CrossRef]

J. P. Rolland, and H. H. Barrett, "Effect of random background inhomogeneity on observer detection performance," J. Opt. Soc. Am. A 9, 649-658 (1992).
[CrossRef] [PubMed]

1990 (1)

Abbey, C. K.

Albert, M.

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. A. Maidment, "Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation," Med. Phys. 29, 2131-2139 (2002).
[CrossRef] [PubMed]

Aloj, L.

I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
[CrossRef]

Anderson, E. R.

B. J. Tromberg, O. Coquoz, J. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Philos. Trans. Biol. Sciences 352, 661-668 (1997).
[CrossRef]

Arridge, S. R.

A. R. Pineda, H. H. Barrett, and S. R. Arridge, "Spatially varying detectability for the optical tomography," in Proceedings of SPIE Medical Imaging, Proc. SPIE 3977, 77-83 (2000).
[CrossRef]

Bakic, P. R.

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. A. Maidment, "Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation," Med. Phys. 29, 2131-2139 (2002).
[CrossRef] [PubMed]

Barrett, H. H.

L. Chen, and H. H. Barrett, "Task-based lens design with application to digital mammography," J. Opt. Soc. Am. A 22, 148-167 (2005).
[CrossRef]

S. Park, E. Clarkson, M. A. Kupinski, and H. H. Barrett, "Efficiency of the human observer detecting random signals in random backgrounds," J. Opt. Soc. Am. A. 22, 3-26 (2005).
[CrossRef]

A. R. Pineda, and H. H. Barrett, "Figures of merit for detectors in digital radiography. II. Finite number of secondaries and structured backgrounds," Med. Phys. 31, 359-367 (2004).
[CrossRef] [PubMed]

M. A. Kupinski, E. Clarkson, J. W. Hoppin, L. Chen, and H. H. Barrett, "Experimental determination of object statistics from noisy images," J. Opt. Soc. Am. A. 20, 421-429 (2003).
[CrossRef]

J. D. Sain, and H. H. Barrett, "Performance evaluation of a modular gamma using a detectability index," J. Nucl. Med. 44, 58-66 (2003).
[PubMed]

C. K. Abbey, and H. H. Barrett, "Human- and model- observer performance in ramp-spectrum noise: effects of regularization and object variability," J. Opt. Soc. Am. A 18, 473-488 (2001).
[CrossRef]

A. R. Pineda, H. H. Barrett, and S. R. Arridge, "Spatially varying detectability for the optical tomography," in Proceedings of SPIE Medical Imaging, Proc. SPIE 3977, 77-83 (2000).
[CrossRef]

H. H. Barrett, C. K. Abbey, and E. Clarkson, "Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihood-generating functions," J. Opt. Soc. Am. A 15, 1520-1535 (1998).
[CrossRef]

H. H. Barrett, J. L. Denny, R. F. Wagner, and K. J. Myers, "Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance," J. Opt. Soc. Am. A 12, 834-852 (1995).
[CrossRef]

H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, "Model observers for assessment of image quality," Proc. Natl. Acad. Sci. USA 90, 9758-9765 (1993).
[CrossRef] [PubMed]

H. H. Barrett, T. Gooley, K. Girodias, J. P. Rolland, T. White, and J. Yao, "Linear discriminants and image quality," Image Vision Comput. 10, 451-460 (1992).
[CrossRef]

J. P. Rolland, and H. H. Barrett, "Effect of random background inhomogeneity on observer detection performance," J. Opt. Soc. Am. A 9, 649-658 (1992).
[CrossRef] [PubMed]

H. H. Barrett, "Objective assessment of image quality: effects of quantum noise and object variability," J. Opt. Soc. Am. A 7, 1266-1278 (1990).
[CrossRef] [PubMed]

Baydush, A. H.

M. Chen, J. E. Bowsher, A. H. Baydush, K. L. Gilland, D. M. DeLong, and R. J. Jaszczak, "Using the Hotelling observer on multislice and multiview simulated SPECT myocardial images," IEEE Trans. Nucl. Sci. 49, 661-667 (2002).
[CrossRef]

Berg, W.

I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
[CrossRef]

Bowsher, J. E.

M. Chen, J. E. Bowsher, A. H. Baydush, K. L. Gilland, D. M. DeLong, and R. J. Jaszczak, "Using the Hotelling observer on multislice and multiview simulated SPECT myocardial images," IEEE Trans. Nucl. Sci. 49, 661-667 (2002).
[CrossRef]

Brzakovic, D.

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. A. Maidment, "Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation," Med. Phys. 29, 2131-2139 (2002).
[CrossRef] [PubMed]

Butler, J.

B. J. Tromberg, O. Coquoz, J. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Philos. Trans. Biol. Sciences 352, 661-668 (1997).
[CrossRef]

Cahn, M.

B. J. Tromberg, O. Coquoz, J. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Philos. Trans. Biol. Sciences 352, 661-668 (1997).
[CrossRef]

Chang, V.

I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
[CrossRef]

Chen, L.

L. Chen, and H. H. Barrett, "Task-based lens design with application to digital mammography," J. Opt. Soc. Am. A 22, 148-167 (2005).
[CrossRef]

M. A. Kupinski, E. Clarkson, J. W. Hoppin, L. Chen, and H. H. Barrett, "Experimental determination of object statistics from noisy images," J. Opt. Soc. Am. A. 20, 421-429 (2003).
[CrossRef]

Chen, M.

M. Chen, J. E. Bowsher, A. H. Baydush, K. L. Gilland, D. M. DeLong, and R. J. Jaszczak, "Using the Hotelling observer on multislice and multiview simulated SPECT myocardial images," IEEE Trans. Nucl. Sci. 49, 661-667 (2002).
[CrossRef]

Cheong, K.

K. Cheong, and E. Clarkson, "Delectability study on OCT in the presence of speckle with Hotelling observer," Med. Phys. 32, 1915-1915 (2005).
[CrossRef]

Chow, C.

I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
[CrossRef]

Clarkson, E.

K. Cheong, and E. Clarkson, "Delectability study on OCT in the presence of speckle with Hotelling observer," Med. Phys. 32, 1915-1915 (2005).
[CrossRef]

S. Park, E. Clarkson, M. A. Kupinski, and H. H. Barrett, "Efficiency of the human observer detecting random signals in random backgrounds," J. Opt. Soc. Am. A. 22, 3-26 (2005).
[CrossRef]

M. A. Kupinski, E. Clarkson, J. W. Hoppin, L. Chen, and H. H. Barrett, "Experimental determination of object statistics from noisy images," J. Opt. Soc. Am. A. 20, 421-429 (2003).
[CrossRef]

H. H. Barrett, C. K. Abbey, and E. Clarkson, "Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihood-generating functions," J. Opt. Soc. Am. A 15, 1520-1535 (1998).
[CrossRef]

Comtat, C.

C. Lartizien, P. E. Kinahan, and C. Comtat, "Volumetric model and human observer comparisons of tumor detection for whole-body positron emission tomography " Acad. Radiol. 11, 637-648 (2004).
[CrossRef] [PubMed]

Coquoz, O.

B. J. Tromberg, O. Coquoz, J. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Philos. Trans. Biol. Sciences 352, 661-668 (1997).
[CrossRef]

Cowan, K.

I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
[CrossRef]

Danforth, D.

I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
[CrossRef]

Dawes, R. M.

J. A. Swets, R. M. Dawes, and J. Monahan, "Psychological science can improve diagnostic decisions," Psych.Science Public Interest 1, 1-26 (2000).
[CrossRef]

DeLong, D. M.

M. Chen, J. E. Bowsher, A. H. Baydush, K. L. Gilland, D. M. DeLong, and R. J. Jaszczak, "Using the Hotelling observer on multislice and multiview simulated SPECT myocardial images," IEEE Trans. Nucl. Sci. 49, 661-667 (2002).
[CrossRef]

Denny, J. L.

Dougherty, D. E.

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, "3-D Bayesian optical imaging reconstruction with domain decomposition," IEEE Trans. Med. Imaging 20, 147-161 (2001).
[CrossRef] [PubMed]

Eppstein, M. J.

A. Godavarty, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, "Detection of single and multiple targets in tissue phantoms with fluorescence-enhanced optical imaging: feasibility study," Radiology 235, 148-154 (2005).
[CrossRef] [PubMed]

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, "3-D Bayesian optical imaging reconstruction with domain decomposition," IEEE Trans. Med. Imaging 20, 147-161 (2001).
[CrossRef] [PubMed]

Fishkin, J.

B. J. Tromberg, O. Coquoz, J. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Philos. Trans. Biol. Sciences 352, 661-668 (1997).
[CrossRef]

Frank, J.

I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
[CrossRef]

Frey, E. C.

S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, and G. T. Gullberg, "Evaluation of myocardial defect detection between parallel-hole and fan-beam SPECT using the Hotelling trace," IEEE Trans. Nucl. Sci. 45, 2205-2210 (1998).
[CrossRef]

Gagne, R. M.

R. M. Gagne, B. D. Gallas, and K. J. Myers, "Toward objective and quantitative evaluation of imaging systems using images of phantoms," Med. Phys. 33, 83-95 (2005).
[CrossRef]

Gallas, B. D.

R. M. Gagne, B. D. Gallas, and K. J. Myers, "Toward objective and quantitative evaluation of imaging systems using images of phantoms," Med. Phys. 33, 83-95 (2005).
[CrossRef]

Gifford, H. C.

H. C. Gifford, R. G. Wells, and M. A. King, "A comparison of human observer LROC and numerical observer ROC for tumor detection in SPECT images," IEEE Trans. Nucl. Sci. 46, 1032-1037 (1999).
[CrossRef]

Gilland, K. L.

M. Chen, J. E. Bowsher, A. H. Baydush, K. L. Gilland, D. M. DeLong, and R. J. Jaszczak, "Using the Hotelling observer on multislice and multiview simulated SPECT myocardial images," IEEE Trans. Nucl. Sci. 49, 661-667 (2002).
[CrossRef]

Girodias, K.

H. H. Barrett, T. Gooley, K. Girodias, J. P. Rolland, T. White, and J. Yao, "Linear discriminants and image quality," Image Vision Comput. 10, 451-460 (1992).
[CrossRef]

Glaser, M. S.

B. B. Glasgow, M. S. Glaser, and R. H. Whitley, "Remote imaging in the ultraviolet using intensified and nonintensified CCDs," Proc. SPIE 2173, 85-96 (1994).
[CrossRef]

Glasgow, B. B.

B. B. Glasgow, M. S. Glaser, and R. H. Whitley, "Remote imaging in the ultraviolet using intensified and nonintensified CCDs," Proc. SPIE 2173, 85-96 (1994).
[CrossRef]

Godavarty, A.

A. Godavarty, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, "Detection of single and multiple targets in tissue phantoms with fluorescence-enhanced optical imaging: feasibility study," Radiology 235, 148-154 (2005).
[CrossRef] [PubMed]

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

Gooley, T.

H. H. Barrett, T. Gooley, K. Girodias, J. P. Rolland, T. White, and J. Yao, "Linear discriminants and image quality," Image Vision Comput. 10, 451-460 (1992).
[CrossRef]

Gross, J. D.

B. J. Tromberg, O. Coquoz, J. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Philos. Trans. Biol. Sciences 352, 661-668 (1997).
[CrossRef]

Gullberg, G. T.

S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, and G. T. Gullberg, "Evaluation of myocardial defect detection between parallel-hole and fan-beam SPECT using the Hotelling trace," IEEE Trans. Nucl. Sci. 45, 2205-2210 (1998).
[CrossRef]

Hawrysz, D. J.

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, "3-D Bayesian optical imaging reconstruction with domain decomposition," IEEE Trans. Med. Imaging 20, 147-161 (2001).
[CrossRef] [PubMed]

Hayes, C.

R. M. L. Warren, and C. Hayes, "Localization of breast lesions shown only on MRI - a review for the UK study of MRI screening for breast cancer," Brit. J. Radiol. 73, 123-132 (2000).
[PubMed]

Hoppin, J. W.

M. A. Kupinski, E. Clarkson, J. W. Hoppin, L. Chen, and H. H. Barrett, "Experimental determination of object statistics from noisy images," J. Opt. Soc. Am. A. 20, 421-429 (2003).
[CrossRef]

Houston, J. P.

K. Hwang, J. P. Houston, J. C. Rasmussen, A. Joshi, S. Ke, C. Li, and E. M. Sevick-Muraca, "Improved excitation light rejection enhances small-animal fluorescencent optical imaging," J. Mol. Imaging 4, 194-204 (2005).

Hutchinson, C. L.

C. L. Hutchinson, J. R. Lakowicz, and E. M. Sevick-Muraca, "Fluorescence lifetime-based sensing in tissues: a computational study," Biophys. J. 68, 1574-1582 (1995).
[CrossRef] [PubMed]

Hwang, K.

K. Hwang, J. P. Houston, J. C. Rasmussen, A. Joshi, S. Ke, C. Li, and E. M. Sevick-Muraca, "Improved excitation light rejection enhances small-animal fluorescencent optical imaging," J. Mol. Imaging 4, 194-204 (2005).

Jaszczak, R. J.

M. Chen, J. E. Bowsher, A. H. Baydush, K. L. Gilland, D. M. DeLong, and R. J. Jaszczak, "Using the Hotelling observer on multislice and multiview simulated SPECT myocardial images," IEEE Trans. Nucl. Sci. 49, 661-667 (2002).
[CrossRef]

Jones, E.

I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
[CrossRef]

Joshi, A.

K. Hwang, J. P. Houston, J. C. Rasmussen, A. Joshi, S. Ke, C. Li, and E. M. Sevick-Muraca, "Improved excitation light rejection enhances small-animal fluorescencent optical imaging," J. Mol. Imaging 4, 194-204 (2005).

A. K. Sahu, R. Roy, A. Joshi, and E. M. Sevick-Muraca, "Evaluation of anatomical structure and non-uniform distribution of imaging agent in near-infrared fluorescence-enhanced optical tomography," Opt. Express 13, 10182-10199 (2005), http://www.opticsexpress.org/abstract.cfm?id=86462.
[CrossRef] [PubMed]

Kalender, W. A.

W. A. Kalender, A. Polacin, and C. Suss, "A comparison of conventional and spiral CT - an experimental-study on the detection of spherical lesions," J. Comput. Assist. Tomo. 18, 167-176 (1994).
[CrossRef]

Ke, S.

K. Hwang, J. P. Houston, J. C. Rasmussen, A. Joshi, S. Ke, C. Li, and E. M. Sevick-Muraca, "Improved excitation light rejection enhances small-animal fluorescencent optical imaging," J. Mol. Imaging 4, 194-204 (2005).

Kinahan, P. E.

C. Lartizien, P. E. Kinahan, and C. Comtat, "Volumetric model and human observer comparisons of tumor detection for whole-body positron emission tomography " Acad. Radiol. 11, 637-648 (2004).
[CrossRef] [PubMed]

King, M. A.

H. C. Gifford, R. G. Wells, and M. A. King, "A comparison of human observer LROC and numerical observer ROC for tumor detection in SPECT images," IEEE Trans. Nucl. Sci. 46, 1032-1037 (1999).
[CrossRef]

Kupinski, M. A.

S. Park, E. Clarkson, M. A. Kupinski, and H. H. Barrett, "Efficiency of the human observer detecting random signals in random backgrounds," J. Opt. Soc. Am. A. 22, 3-26 (2005).
[CrossRef]

M. A. Kupinski, E. Clarkson, J. W. Hoppin, L. Chen, and H. H. Barrett, "Experimental determination of object statistics from noisy images," J. Opt. Soc. Am. A. 20, 421-429 (2003).
[CrossRef]

Lakowicz, J. R.

C. L. Hutchinson, J. R. Lakowicz, and E. M. Sevick-Muraca, "Fluorescence lifetime-based sensing in tissues: a computational study," Biophys. J. 68, 1574-1582 (1995).
[CrossRef] [PubMed]

Lalush, D. S.

S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, and G. T. Gullberg, "Evaluation of myocardial defect detection between parallel-hole and fan-beam SPECT using the Hotelling trace," IEEE Trans. Nucl. Sci. 45, 2205-2210 (1998).
[CrossRef]

Lartizien, C.

C. Lartizien, P. E. Kinahan, and C. Comtat, "Volumetric model and human observer comparisons of tumor detection for whole-body positron emission tomography " Acad. Radiol. 11, 637-648 (2004).
[CrossRef] [PubMed]

Li, C.

K. Hwang, J. P. Houston, J. C. Rasmussen, A. Joshi, S. Ke, C. Li, and E. M. Sevick-Muraca, "Improved excitation light rejection enhances small-animal fluorescencent optical imaging," J. Mol. Imaging 4, 194-204 (2005).

Maidment, A. D. A.

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. A. Maidment, "Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation," Med. Phys. 29, 2131-2139 (2002).
[CrossRef] [PubMed]

Majewski, L.

I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
[CrossRef]

Majewski, S.

I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
[CrossRef]

Markowitz, A.

I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
[CrossRef]

Monahan, J.

J. A. Swets, R. M. Dawes, and J. Monahan, "Psychological science can improve diagnostic decisions," Psych.Science Public Interest 1, 1-26 (2000).
[CrossRef]

Mulshine, J.

I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
[CrossRef]

Myers, K. J.

R. M. Gagne, B. D. Gallas, and K. J. Myers, "Toward objective and quantitative evaluation of imaging systems using images of phantoms," Med. Phys. 33, 83-95 (2005).
[CrossRef]

H. H. Barrett, J. L. Denny, R. F. Wagner, and K. J. Myers, "Objective assessment of image quality. II. Fisher information, Fourier crosstalk, and figures of merit for task performance," J. Opt. Soc. Am. A 12, 834-852 (1995).
[CrossRef]

H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, "Model observers for assessment of image quality," Proc. Natl. Acad. Sci. USA 90, 9758-9765 (1993).
[CrossRef] [PubMed]

Park, S.

S. Park, E. Clarkson, M. A. Kupinski, and H. H. Barrett, "Efficiency of the human observer detecting random signals in random backgrounds," J. Opt. Soc. Am. A. 22, 3-26 (2005).
[CrossRef]

Pham, D.

B. J. Tromberg, O. Coquoz, J. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Philos. Trans. Biol. Sciences 352, 661-668 (1997).
[CrossRef]

Pham, T.

B. J. Tromberg, O. Coquoz, J. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Philos. Trans. Biol. Sciences 352, 661-668 (1997).
[CrossRef]

Pineda, A. R.

A. R. Pineda, and H. H. Barrett, "Figures of merit for detectors in digital radiography. II. Finite number of secondaries and structured backgrounds," Med. Phys. 31, 359-367 (2004).
[CrossRef] [PubMed]

A. R. Pineda, H. H. Barrett, and S. R. Arridge, "Spatially varying detectability for the optical tomography," in Proceedings of SPIE Medical Imaging, Proc. SPIE 3977, 77-83 (2000).
[CrossRef]

Polacin, A.

W. A. Kalender, A. Polacin, and C. Suss, "A comparison of conventional and spiral CT - an experimental-study on the detection of spherical lesions," J. Comput. Assist. Tomo. 18, 167-176 (1994).
[CrossRef]

Rasmussen, J. C.

K. Hwang, J. P. Houston, J. C. Rasmussen, A. Joshi, S. Ke, C. Li, and E. M. Sevick-Muraca, "Improved excitation light rejection enhances small-animal fluorescencent optical imaging," J. Mol. Imaging 4, 194-204 (2005).

Rolland, J. P.

H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, "Model observers for assessment of image quality," Proc. Natl. Acad. Sci. USA 90, 9758-9765 (1993).
[CrossRef] [PubMed]

H. H. Barrett, T. Gooley, K. Girodias, J. P. Rolland, T. White, and J. Yao, "Linear discriminants and image quality," Image Vision Comput. 10, 451-460 (1992).
[CrossRef]

J. P. Rolland, and H. H. Barrett, "Effect of random background inhomogeneity on observer detection performance," J. Opt. Soc. Am. A 9, 649-658 (1992).
[CrossRef] [PubMed]

Roy, R.

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

A. K. Sahu, R. Roy, A. Joshi, and E. M. Sevick-Muraca, "Evaluation of anatomical structure and non-uniform distribution of imaging agent in near-infrared fluorescence-enhanced optical tomography," Opt. Express 13, 10182-10199 (2005), http://www.opticsexpress.org/abstract.cfm?id=86462.
[CrossRef] [PubMed]

Sahu, A. K.

Sain, J. D.

J. D. Sain, and H. H. Barrett, "Performance evaluation of a modular gamma using a detectability index," J. Nucl. Med. 44, 58-66 (2003).
[PubMed]

Sevick-Muraca, E. M.

A. K. Sahu, R. Roy, A. Joshi, and E. M. Sevick-Muraca, "Evaluation of anatomical structure and non-uniform distribution of imaging agent in near-infrared fluorescence-enhanced optical tomography," Opt. Express 13, 10182-10199 (2005), http://www.opticsexpress.org/abstract.cfm?id=86462.
[CrossRef] [PubMed]

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, "Detection of single and multiple targets in tissue phantoms with fluorescence-enhanced optical imaging: feasibility study," Radiology 235, 148-154 (2005).
[CrossRef] [PubMed]

K. Hwang, J. P. Houston, J. C. Rasmussen, A. Joshi, S. Ke, C. Li, and E. M. Sevick-Muraca, "Improved excitation light rejection enhances small-animal fluorescencent optical imaging," J. Mol. Imaging 4, 194-204 (2005).

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, "3-D Bayesian optical imaging reconstruction with domain decomposition," IEEE Trans. Med. Imaging 20, 147-161 (2001).
[CrossRef] [PubMed]

C. L. Hutchinson, J. R. Lakowicz, and E. M. Sevick-Muraca, "Fluorescence lifetime-based sensing in tissues: a computational study," Biophys. J. 68, 1574-1582 (1995).
[CrossRef] [PubMed]

Suss, C.

W. A. Kalender, A. Polacin, and C. Suss, "A comparison of conventional and spiral CT - an experimental-study on the detection of spherical lesions," J. Comput. Assist. Tomo. 18, 167-176 (1994).
[CrossRef]

Swets, J. A.

J. A. Swets, R. M. Dawes, and J. Monahan, "Psychological science can improve diagnostic decisions," Psych.Science Public Interest 1, 1-26 (2000).
[CrossRef]

Thompson, A. B.

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

Tromberg, B. J.

B. J. Tromberg, O. Coquoz, J. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Philos. Trans. Biol. Sciences 352, 661-668 (1997).
[CrossRef]

Tsui, B. M. W.

S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, and G. T. Gullberg, "Evaluation of myocardial defect detection between parallel-hole and fan-beam SPECT using the Hotelling trace," IEEE Trans. Nucl. Sci. 45, 2205-2210 (1998).
[CrossRef]

Venugopalan, V.

B. J. Tromberg, O. Coquoz, J. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Philos. Trans. Biol. Sciences 352, 661-668 (1997).
[CrossRef]

Wagner, R. F.

Warren, R. M. L.

R. M. L. Warren, and C. Hayes, "Localization of breast lesions shown only on MRI - a review for the UK study of MRI screening for breast cancer," Brit. J. Radiol. 73, 123-132 (2000).
[PubMed]

Weinberg, I.

I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
[CrossRef]

Weisenberger, A.

I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
[CrossRef]

Wells, R. G.

H. C. Gifford, R. G. Wells, and M. A. King, "A comparison of human observer LROC and numerical observer ROC for tumor detection in SPECT images," IEEE Trans. Nucl. Sci. 46, 1032-1037 (1999).
[CrossRef]

White, T.

H. H. Barrett, T. Gooley, K. Girodias, J. P. Rolland, T. White, and J. Yao, "Linear discriminants and image quality," Image Vision Comput. 10, 451-460 (1992).
[CrossRef]

Whitley, R. H.

B. B. Glasgow, M. S. Glaser, and R. H. Whitley, "Remote imaging in the ultraviolet using intensified and nonintensified CCDs," Proc. SPIE 2173, 85-96 (1994).
[CrossRef]

Wollenweber, S. D.

S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, and G. T. Gullberg, "Evaluation of myocardial defect detection between parallel-hole and fan-beam SPECT using the Hotelling trace," IEEE Trans. Nucl. Sci. 45, 2205-2210 (1998).
[CrossRef]

Yao, J.

H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, "Model observers for assessment of image quality," Proc. Natl. Acad. Sci. USA 90, 9758-9765 (1993).
[CrossRef] [PubMed]

H. H. Barrett, T. Gooley, K. Girodias, J. P. Rolland, T. White, and J. Yao, "Linear discriminants and image quality," Image Vision Comput. 10, 451-460 (1992).
[CrossRef]

Zhang, C.

A. Godavarty, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, "Detection of single and multiple targets in tissue phantoms with fluorescence-enhanced optical imaging: feasibility study," Radiology 235, 148-154 (2005).
[CrossRef] [PubMed]

Zujewski, J.

I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
[CrossRef]

Acad. Radiol. (1)

C. Lartizien, P. E. Kinahan, and C. Comtat, "Volumetric model and human observer comparisons of tumor detection for whole-body positron emission tomography " Acad. Radiol. 11, 637-648 (2004).
[CrossRef] [PubMed]

Biophys. J. (1)

C. L. Hutchinson, J. R. Lakowicz, and E. M. Sevick-Muraca, "Fluorescence lifetime-based sensing in tissues: a computational study," Biophys. J. 68, 1574-1582 (1995).
[CrossRef] [PubMed]

Brit. J. Radiol. (1)

R. M. L. Warren, and C. Hayes, "Localization of breast lesions shown only on MRI - a review for the UK study of MRI screening for breast cancer," Brit. J. Radiol. 73, 123-132 (2000).
[PubMed]

Euro. J. Nucl. Med. (1)

I. Weinberg, S. Majewski, A. Weisenberger, A. Markowitz, L. Aloj, L. Majewski, D. Danforth, J. Mulshine, K. Cowan, J. Zujewski, C. Chow, E. Jones, V. Chang, W. Berg, and J. Frank, "Preliminary results for positron emission mammography: Real-time functional breast imaging in a conventional mammography gantry," Euro. J. Nucl. Med. 23, 804-806 (1996).
[CrossRef]

IEEE Trans. Med. Imaging (2)

M. J. Eppstein, D. E. Dougherty, D. J. Hawrysz, and E. M. Sevick-Muraca, "3-D Bayesian optical imaging reconstruction with domain decomposition," IEEE Trans. Med. Imaging 20, 147-161 (2001).
[CrossRef] [PubMed]

R. Roy, A. B. Thompson, A. Godavarty, and E. M. Sevick-Muraca, "Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry," IEEE Trans. Med. Imaging 24, 137-154 (2005).
[CrossRef] [PubMed]

IEEE Trans. Nucl. Sci. (3)

H. C. Gifford, R. G. Wells, and M. A. King, "A comparison of human observer LROC and numerical observer ROC for tumor detection in SPECT images," IEEE Trans. Nucl. Sci. 46, 1032-1037 (1999).
[CrossRef]

S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, and G. T. Gullberg, "Evaluation of myocardial defect detection between parallel-hole and fan-beam SPECT using the Hotelling trace," IEEE Trans. Nucl. Sci. 45, 2205-2210 (1998).
[CrossRef]

M. Chen, J. E. Bowsher, A. H. Baydush, K. L. Gilland, D. M. DeLong, and R. J. Jaszczak, "Using the Hotelling observer on multislice and multiview simulated SPECT myocardial images," IEEE Trans. Nucl. Sci. 49, 661-667 (2002).
[CrossRef]

Image Vision Comput. (1)

H. H. Barrett, T. Gooley, K. Girodias, J. P. Rolland, T. White, and J. Yao, "Linear discriminants and image quality," Image Vision Comput. 10, 451-460 (1992).
[CrossRef]

J. Comput. Assist. Tomo. (1)

W. A. Kalender, A. Polacin, and C. Suss, "A comparison of conventional and spiral CT - an experimental-study on the detection of spherical lesions," J. Comput. Assist. Tomo. 18, 167-176 (1994).
[CrossRef]

J. Mol. Imaging (1)

K. Hwang, J. P. Houston, J. C. Rasmussen, A. Joshi, S. Ke, C. Li, and E. M. Sevick-Muraca, "Improved excitation light rejection enhances small-animal fluorescencent optical imaging," J. Mol. Imaging 4, 194-204 (2005).

J. Nucl. Med. (1)

J. D. Sain, and H. H. Barrett, "Performance evaluation of a modular gamma using a detectability index," J. Nucl. Med. 44, 58-66 (2003).
[PubMed]

J. Opt. Soc. Am. A (6)

J. Opt. Soc. Am. A. (2)

M. A. Kupinski, E. Clarkson, J. W. Hoppin, L. Chen, and H. H. Barrett, "Experimental determination of object statistics from noisy images," J. Opt. Soc. Am. A. 20, 421-429 (2003).
[CrossRef]

S. Park, E. Clarkson, M. A. Kupinski, and H. H. Barrett, "Efficiency of the human observer detecting random signals in random backgrounds," J. Opt. Soc. Am. A. 22, 3-26 (2005).
[CrossRef]

Med. Phys. (4)

P. R. Bakic, M. Albert, D. Brzakovic, and A. D. A. Maidment, "Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation," Med. Phys. 29, 2131-2139 (2002).
[CrossRef] [PubMed]

A. R. Pineda, and H. H. Barrett, "Figures of merit for detectors in digital radiography. II. Finite number of secondaries and structured backgrounds," Med. Phys. 31, 359-367 (2004).
[CrossRef] [PubMed]

K. Cheong, and E. Clarkson, "Delectability study on OCT in the presence of speckle with Hotelling observer," Med. Phys. 32, 1915-1915 (2005).
[CrossRef]

R. M. Gagne, B. D. Gallas, and K. J. Myers, "Toward objective and quantitative evaluation of imaging systems using images of phantoms," Med. Phys. 33, 83-95 (2005).
[CrossRef]

Opt. Express (1)

Philos. Trans. Biol. Sciences (1)

B. J. Tromberg, O. Coquoz, J. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan, and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Philos. Trans. Biol. Sciences 352, 661-668 (1997).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers, "Model observers for assessment of image quality," Proc. Natl. Acad. Sci. USA 90, 9758-9765 (1993).
[CrossRef] [PubMed]

Proc. SPIE (2)

B. B. Glasgow, M. S. Glaser, and R. H. Whitley, "Remote imaging in the ultraviolet using intensified and nonintensified CCDs," Proc. SPIE 2173, 85-96 (1994).
[CrossRef]

A. R. Pineda, H. H. Barrett, and S. R. Arridge, "Spatially varying detectability for the optical tomography," in Proceedings of SPIE Medical Imaging, Proc. SPIE 3977, 77-83 (2000).
[CrossRef]

Radiology (1)

A. Godavarty, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, "Detection of single and multiple targets in tissue phantoms with fluorescence-enhanced optical imaging: feasibility study," Radiology 235, 148-154 (2005).
[CrossRef] [PubMed]

Science Public Interest (1)

J. A. Swets, R. M. Dawes, and J. Monahan, "Psychological science can improve diagnostic decisions," Psych.Science Public Interest 1, 1-26 (2000).
[CrossRef]

Other (9)

E. J. Ientilucci, "Synthetic simulation and modeling of image intensified CCDs (IICCD)," PhD Thesis, Rochester Institute of Technology, Rochester, NY, 2000.

In this context, the word "signal" means "the object being measured", unlike "the object being detected" in the target detection tasks.

K. Hwang, and E. M. Sevick-Muraca, "Influence of excitation light rejection on forward model mismatch," Med. Phys. (in preparation.).

Referring to the corpuscular nature of light.

H. Lohinger, Teach/Me Data Analysis (Springer-Verlag, Berlin-New York-Tokyo, 1999).

H. H. Barrett, and K. J. Myers, Foundations of Image Science (John Wiley & Sons, Inc., New Jersey, 2004).

Arising from the instrumentation of the system.

E. M. Sevick-Muraca, E. Kuwana, A. Godavarty, J. P. Houston, A. B. Thompson, and R. Roy, "Near infrared fluorescence imaging and spectroscopy in random media and tissues," Chapter 33 in Biomedical Photonics Handbook, CRC Press, ed. J. Vo-Dinh, (2003).

A. R. P. Fortin, "Detection-theoretic evaluation in digital radiography and optical tomography," PhD Thesis, The University of Arizona, Tucson, AZ, 2002.

Supplementary Material (3)

» Media 1: MPG (740 KB)     
» Media 2: MPG (802 KB)     
» Media 3: MPG (758 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

The breast-shaped geometry consisting of a 10 cm diameter hemispherical top to simulate a human breast. The bottom cylindrical base has 20 cm diameter and is 2.5 cm high. Also shown is 1 cm3 target at a depth d. All dimensions are in centimeters.

Fig. 2.
Fig. 2.

The locations of the point sources and detectors on the breast-shaped geometry. The red points denote the sources and the blue points denote the detectors.

Fig. 3.
Fig. 3.

Schematic of the experimental setup. The various components are labeled to describe: (A) a gain-modulated image intensifier, (B) a 16-bit cooled CCD camera, (C) a modulated laser diode used as a light source, (D) an 830-nm band pass filter, (E) a holographic notch filter, (F) the breast shaped phantom, and (G) the detector fibers leading to an interfacing plate. The Fig. is not to scale.

Fig. 4.
Fig. 4.

Movies depicting the lumpy backgrounds of endogenous and exogenous optical properties using Lumpy object model. The lumps in μaxi (0.72 MB) (a), μaxf (0.78 MB) (b), and μsx (0.74 MB) (c) are shown as cutplanes to the breast geometry (Fig. 1) parallel to yz-plane. The snapshots shown above are cutplanes passing through x=-1 cm. In each case, one hundred lumps are uniformly generated in the hemispherical volume with spatial spreads of 5 mm and strength values equal to hundred percent of the average background values of optical properties as given in Table I.

Fig. 5.
Fig. 5.

SNRHot computed from simulated measurements of light intensity (filled circles) and phase (open circles) as a function of strength of lumps in (a) the endogenous optical properties (μaxi ,μami , μsx , and μsm ), and (b) endogenous as well as exogenous (μaxf , and μamf ) optical properties vs. the strength of lumps. The target is a 1 cm3 spherical volume at a depth of 1 cm and contrasted from its surroundings by 10:1. The centroid of the target is at (0, 0, 4) inside the breast geometry (Fig. 1).

Fig. 6.
Fig. 6.

SNRHot computed from simulated measurements of light intensity (filled circles) and phase (open circles) in homogeneous background of optical properties vs. the depth of 1 cm3 spherical target contrasted from its surroundings by 10:1. The centroid of the target lies in the z-axis of breast geometry (Fig. 1). The target depth is measured as the distance from its centroid to the point (0, 0, 5) in breast geometry.

Fig. 7.
Fig. 7.

SNRHot computed from simulated measurements of light intensity (filled circles) and phase (open circles) in hundred percent lumpy backgrounds of endogenous (μaxi , μami , μsx , and μsm ) as well as exogenous ( μaxf , and μamf ) optical properties vs. the depth of 1 cm3 spherical target contrasted from its surroundings by 10:1. The centroid of the target lies in the z-axis of breast geometry (Fig. 1). The target depth is measured as the distance from its centroid to the point (0, 0, 5) in breast geometry.

Fig. 8.
Fig. 8.

SNRHot computed from simulated measurements of (a) intensity, IAC , and (b) phase, θ , in one hundred percent lumpy backgrounds of endogenous as well as exogenous optical properties vs. the depth of 1 cm3 spherical target contrasted from its surroundings by 10:1. The centroid of the target lies in the z-axis and the target depth is measured as the distance from its centroid to the point (0, 0, 5) in breast geometry (Fig. 1). The various plots show the affect of varying optical densities (OD) of the excitation light rejection filter.

Fig. 9.
Fig. 9.

SNRHot computed from simulated measurements of intensity, IAC , in one hundred percent lumpy backgrounds of endogenous as well as exogenous optical properties vs. the number of imaging data sets, N. The centroid of the target lies in the z-axis and it is contrasted from its surroundings by 10:1. One twenty eight point detectors (as shown in Fig. 2) are used for the collection of light and only one source is lighted such that the measurement data set is a vector of 128×1.

Tables (1)

Tables Icon

Table I. Average background optical properties. The parameters used to solve the coupled diffusion equations are also tabulated.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

. [ D x ( r ) Φ x ( r , ω ) ] + [ i ω c + μ axi ( r ) + μ axf ( r ) ] Φ x ( r , ω ) = S ( r , ω )
. [ D m ( r ) Φ m ( r , ω ) ] + [ i ω c + μ ami ( r ) + μ amf ( r ) ] Φ m ( r , ω ) = ϕ μ axf ( r ) 1 + i ω τ 1 + [ ω τ ] 2 Φ x ( r , ω ) .
D x , m = 1 3 ( μ ax , mi + μ ax , mf + μ sx , m ( 1 g ) ) ,
2 D x , m Φ x , m + γ Φ x , m = 0 ,
Φ x , m = I AC x , m e i θ x , m ,
g = H ( f ) + n ,
b ( r ) = b 0 + n = 1 N p lump ( r r n | l 0 , w ) ,
lump ( r r n ) = l 0 exp ( r r n 2 2 w 2 ) 1 V ( Ω ) Ω l 0 exp ( r r n 2 2 w 2 ) d 3 r .
O D λ = log 10 T = log 10 ( I I 0 ) .
y = 10 O D λ m y m + 10 O D λ x y x = I sin ( ω t + θ ) ,
I = ( 10 2 O D λ m I m 2 + 10 2 O D λ x I x 2 + 2 × 10 ( O D λ m + O D λ m ) I m I x cos ( θ m θ x ) ) 1 / 2
θ = arctan ( 10 O D λ m I m sin θ m + 10 O D λ x I x sin θ x 10 O D λ m I m cos θ m + 10 O D λ x I x cos θ x ) .
I AC = I AC 0 ( 1.0 + 0.05 × ( 0,1 ) ) ,
n θ = × ( ξ 0.5 ) ,
H 1 : g = H ( f + t ) + n
H 0 : g = H ( f ) + n .
χ Hot ( g ) = Δ g ¯ T K g 1 g ,
SNR Hot 2 = Δ g ¯ T K g 1 Δ g . ¯
K g = K g ¯ + K ¯ n

Metrics