Abstract

Combined with Fourier transform infrared (FTIR) spectroscopy and three kinds of pattern recognition techniques, 53 traditional Chinese medicine danshen samples were rapidly discriminated according to geographical origins. The results showed that it was feasible to discriminate using FTIR spectroscopy ascertained by principal component analysis (PCA). An effective model was built by employing the Soft Independent Modeling of Class Analogy (SIMCA) and PCA, and 82% of the samples were discriminated correctly. Through use of the artificial neural network (ANN)-based back propagation (BP) network, the origins of danshen were completely classified.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. A. Woo, H. J. Kim, J. H. Cho, and H. Chung, "Discrimination of herbal medicines according to geographical origin with near infrared reflectance spectroscopy and pattern recognition techniques," J. Pharm. Biomed. Anal. 21, 407-413 (1999).
    [CrossRef]
  2. R. Hua, S. Sun, Q. Zhou, I. Noda, and B. Wang, "Discrimination of fritillary according to geographical origin with Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy," J. Pharm. Biomed. Anal. 33, 199-209 (2003).
    [CrossRef] [PubMed]
  3. L. Xu and X. Shao, Methods of Chemometrics (Science Press, Beijing, 2004), Ch. 1, 3.
  4. T. Aoyama, Y. Suzuki, and H. Ichikawa, "Neural networks applied to quantitative structure-activity relationship analysis," J. Med. Chem. 33, 2583-2590 (1990).
    [CrossRef] [PubMed]
  5. P. J. Gemperline, J. R. Long, and V. G. Geogorious, "Nonlinear multivariate calibration using principal components regression and artificial neural networks," J. Anal. Chem. 63, 2313-2323 (1991).
    [CrossRef]
  6. S. Sun, J. Tang, Z. Yuan, and Y. Bai, "FTIR and classification study on trueborn tuber dioscoreae samples," Chin. J. Spectrosc. Spectral Anal. 23, 258-261 (2003).
  7. X. Yang and J. Zheng, Artificial neural network and blind signal processing (Tsinghua University Press, Beijing, 2003).

2003 (2)

R. Hua, S. Sun, Q. Zhou, I. Noda, and B. Wang, "Discrimination of fritillary according to geographical origin with Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy," J. Pharm. Biomed. Anal. 33, 199-209 (2003).
[CrossRef] [PubMed]

S. Sun, J. Tang, Z. Yuan, and Y. Bai, "FTIR and classification study on trueborn tuber dioscoreae samples," Chin. J. Spectrosc. Spectral Anal. 23, 258-261 (2003).

1999 (1)

Y. A. Woo, H. J. Kim, J. H. Cho, and H. Chung, "Discrimination of herbal medicines according to geographical origin with near infrared reflectance spectroscopy and pattern recognition techniques," J. Pharm. Biomed. Anal. 21, 407-413 (1999).
[CrossRef]

1991 (1)

P. J. Gemperline, J. R. Long, and V. G. Geogorious, "Nonlinear multivariate calibration using principal components regression and artificial neural networks," J. Anal. Chem. 63, 2313-2323 (1991).
[CrossRef]

1990 (1)

T. Aoyama, Y. Suzuki, and H. Ichikawa, "Neural networks applied to quantitative structure-activity relationship analysis," J. Med. Chem. 33, 2583-2590 (1990).
[CrossRef] [PubMed]

Aoyama, T.

T. Aoyama, Y. Suzuki, and H. Ichikawa, "Neural networks applied to quantitative structure-activity relationship analysis," J. Med. Chem. 33, 2583-2590 (1990).
[CrossRef] [PubMed]

Bai, Y.

S. Sun, J. Tang, Z. Yuan, and Y. Bai, "FTIR and classification study on trueborn tuber dioscoreae samples," Chin. J. Spectrosc. Spectral Anal. 23, 258-261 (2003).

Cho, J. H.

Y. A. Woo, H. J. Kim, J. H. Cho, and H. Chung, "Discrimination of herbal medicines according to geographical origin with near infrared reflectance spectroscopy and pattern recognition techniques," J. Pharm. Biomed. Anal. 21, 407-413 (1999).
[CrossRef]

Chung, H.

Y. A. Woo, H. J. Kim, J. H. Cho, and H. Chung, "Discrimination of herbal medicines according to geographical origin with near infrared reflectance spectroscopy and pattern recognition techniques," J. Pharm. Biomed. Anal. 21, 407-413 (1999).
[CrossRef]

Gemperline, P. J.

P. J. Gemperline, J. R. Long, and V. G. Geogorious, "Nonlinear multivariate calibration using principal components regression and artificial neural networks," J. Anal. Chem. 63, 2313-2323 (1991).
[CrossRef]

Geogorious, V. G.

P. J. Gemperline, J. R. Long, and V. G. Geogorious, "Nonlinear multivariate calibration using principal components regression and artificial neural networks," J. Anal. Chem. 63, 2313-2323 (1991).
[CrossRef]

Hua, R.

R. Hua, S. Sun, Q. Zhou, I. Noda, and B. Wang, "Discrimination of fritillary according to geographical origin with Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy," J. Pharm. Biomed. Anal. 33, 199-209 (2003).
[CrossRef] [PubMed]

Ichikawa, H.

T. Aoyama, Y. Suzuki, and H. Ichikawa, "Neural networks applied to quantitative structure-activity relationship analysis," J. Med. Chem. 33, 2583-2590 (1990).
[CrossRef] [PubMed]

Kim, H. J.

Y. A. Woo, H. J. Kim, J. H. Cho, and H. Chung, "Discrimination of herbal medicines according to geographical origin with near infrared reflectance spectroscopy and pattern recognition techniques," J. Pharm. Biomed. Anal. 21, 407-413 (1999).
[CrossRef]

Long, J. R.

P. J. Gemperline, J. R. Long, and V. G. Geogorious, "Nonlinear multivariate calibration using principal components regression and artificial neural networks," J. Anal. Chem. 63, 2313-2323 (1991).
[CrossRef]

Noda, I.

R. Hua, S. Sun, Q. Zhou, I. Noda, and B. Wang, "Discrimination of fritillary according to geographical origin with Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy," J. Pharm. Biomed. Anal. 33, 199-209 (2003).
[CrossRef] [PubMed]

Sun, S.

R. Hua, S. Sun, Q. Zhou, I. Noda, and B. Wang, "Discrimination of fritillary according to geographical origin with Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy," J. Pharm. Biomed. Anal. 33, 199-209 (2003).
[CrossRef] [PubMed]

S. Sun, J. Tang, Z. Yuan, and Y. Bai, "FTIR and classification study on trueborn tuber dioscoreae samples," Chin. J. Spectrosc. Spectral Anal. 23, 258-261 (2003).

Suzuki, Y.

T. Aoyama, Y. Suzuki, and H. Ichikawa, "Neural networks applied to quantitative structure-activity relationship analysis," J. Med. Chem. 33, 2583-2590 (1990).
[CrossRef] [PubMed]

Tang, J.

S. Sun, J. Tang, Z. Yuan, and Y. Bai, "FTIR and classification study on trueborn tuber dioscoreae samples," Chin. J. Spectrosc. Spectral Anal. 23, 258-261 (2003).

Wang, B.

R. Hua, S. Sun, Q. Zhou, I. Noda, and B. Wang, "Discrimination of fritillary according to geographical origin with Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy," J. Pharm. Biomed. Anal. 33, 199-209 (2003).
[CrossRef] [PubMed]

Woo, Y. A.

Y. A. Woo, H. J. Kim, J. H. Cho, and H. Chung, "Discrimination of herbal medicines according to geographical origin with near infrared reflectance spectroscopy and pattern recognition techniques," J. Pharm. Biomed. Anal. 21, 407-413 (1999).
[CrossRef]

Yuan, Z.

S. Sun, J. Tang, Z. Yuan, and Y. Bai, "FTIR and classification study on trueborn tuber dioscoreae samples," Chin. J. Spectrosc. Spectral Anal. 23, 258-261 (2003).

Zhou, Q.

R. Hua, S. Sun, Q. Zhou, I. Noda, and B. Wang, "Discrimination of fritillary according to geographical origin with Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy," J. Pharm. Biomed. Anal. 33, 199-209 (2003).
[CrossRef] [PubMed]

Chin. J. Spectrosc. Spectral Anal. (1)

S. Sun, J. Tang, Z. Yuan, and Y. Bai, "FTIR and classification study on trueborn tuber dioscoreae samples," Chin. J. Spectrosc. Spectral Anal. 23, 258-261 (2003).

J. Med. Chem. (1)

T. Aoyama, Y. Suzuki, and H. Ichikawa, "Neural networks applied to quantitative structure-activity relationship analysis," J. Med. Chem. 33, 2583-2590 (1990).
[CrossRef] [PubMed]

J. Pharm. Biomed. Anal. (2)

Y. A. Woo, H. J. Kim, J. H. Cho, and H. Chung, "Discrimination of herbal medicines according to geographical origin with near infrared reflectance spectroscopy and pattern recognition techniques," J. Pharm. Biomed. Anal. 21, 407-413 (1999).
[CrossRef]

R. Hua, S. Sun, Q. Zhou, I. Noda, and B. Wang, "Discrimination of fritillary according to geographical origin with Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy," J. Pharm. Biomed. Anal. 33, 199-209 (2003).
[CrossRef] [PubMed]

J.Anal. Chem. (1)

P. J. Gemperline, J. R. Long, and V. G. Geogorious, "Nonlinear multivariate calibration using principal components regression and artificial neural networks," J. Anal. Chem. 63, 2313-2323 (1991).
[CrossRef]

Other (2)

L. Xu and X. Shao, Methods of Chemometrics (Science Press, Beijing, 2004), Ch. 1, 3.

X. Yang and J. Zheng, Artificial neural network and blind signal processing (Tsinghua University Press, Beijing, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Spectra of danshen before (a) and after (b) MSC process.

Fig. 2.
Fig. 2.

Absorption spectra of danshen (400~1400 cm-1) from different source areas.

Fig 3.
Fig 3.

Scoring map of PCA result before (a) and after (b) MSC.

Fig. 4.
Fig. 4.

Flow process of BP artificial neural network.

Tables (2)

Tables Icon

Table 1. Serial numbers and source areas of danshen samples.

Tables Icon

Table 2. Classification result of SIMCA.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

M ¯ j = ( 1 / n ) i = 1 n M ij .
M ij = a ij M ¯ j + b ij .
M ij ( MSC ) = ( M ij b ij ) / a ij .

Metrics