Abstract

We propose a new method for generating flat self-phase modulation (SPM)-broadened spectra based on seeding a highly nonlinear fiber (HNLF) with chirp-free parabolic pulses generated using linear pulse shaping in a superstructured fiber Bragg grating (SSFBG). We show that the use of grating reshaped parabolic pulses allows substantially better performance in terms of the extent of SPM-based spectral broadening and flatness relative to conventional hyperbolic secant (sech) pulses. We demonstrate both numerically and experimentally the generation of SPM-broadened pulses centred at 1542nm with 92% of the pulse energy remaining within the 29nm 3dB spectral bandwidth. Applications in spectral slicing and pulse compression are demonstrated.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
    [CrossRef]
  2. S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
    [CrossRef] [PubMed]
  3. Y. Takushima, and K. Kikuchi, "10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber," IEEE Photon. Technol. Lett. 11, 322-324 (1999).
    [CrossRef]
  4. J. W. Nicholson, M. F. Yan, P. Wisk, J. Fleming, F. DiMarcello, E. Monberg, A. Yablon, C. Jorgensen and T. Veng, "All-fiber, octave-spanning supercontinuum," Opt. Lett. 28, 643-645 (2003).
    [CrossRef] [PubMed]
  5. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, "Wave-breaking-free pulses in nonlinear-optical fibers," J. Opt. Soc. Am. B 10, 1185-1190 (1993).
    [CrossRef]
  6. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
    [CrossRef] [PubMed]
  7. C. Billet, J. M. Dudley, N. Joly, and J. C. Knight, "Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm," Opt. Express 13, 3236-3241 (2005),
    [CrossRef] [PubMed]
  8. C. Finot, G. Millot, C. Billet, and J. M. Dudley, "Experimental generation of parabolic pulses via Raman amplification in optical fiber," Opt. Express 11, 1547-1552 (2003).
    [CrossRef] [PubMed]
  9. T. Hirooka, and M. Nakazawa, "Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion," Opt. Lett. 29, 498-500 (2004).
    [CrossRef] [PubMed]
  10. F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, "Pulse Retiming Based on XPM Using Parabolic Pulses Formed in a Fiber Bragg Grating," IEEE Photon. Technol. Lett. 18, 829-831 (2006).
    [CrossRef]
  11. C. Finot, F. Parmigiani, P. Petropoulos, and D. J. Richardson, "Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime," Opt. Express 14, 3161-3170 (2006).
    [CrossRef] [PubMed]
  12. B. C. Thomsen, M. A. F. Roelens, R. T. Watts, D. J. Richardson, "Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications," IEEE Photon. Technol. Lett. 17, 1914-1916 (2005).
    [CrossRef]
  13. C. Dorrer and I. Kang, "Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms," Opt. Lett. 27, 1315-1317 (2002)
    [CrossRef]

2006 (2)

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, "Pulse Retiming Based on XPM Using Parabolic Pulses Formed in a Fiber Bragg Grating," IEEE Photon. Technol. Lett. 18, 829-831 (2006).
[CrossRef]

C. Finot, F. Parmigiani, P. Petropoulos, and D. J. Richardson, "Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime," Opt. Express 14, 3161-3170 (2006).
[CrossRef] [PubMed]

2005 (2)

C. Billet, J. M. Dudley, N. Joly, and J. C. Knight, "Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550 nm," Opt. Express 13, 3236-3241 (2005),
[CrossRef] [PubMed]

B. C. Thomsen, M. A. F. Roelens, R. T. Watts, D. J. Richardson, "Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications," IEEE Photon. Technol. Lett. 17, 1914-1916 (2005).
[CrossRef]

2004 (1)

2003 (2)

2002 (1)

2001 (1)

2000 (2)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

1999 (1)

Y. Takushima, and K. Kikuchi, "10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber," IEEE Photon. Technol. Lett. 11, 322-324 (1999).
[CrossRef]

1993 (1)

Anderson, D.

Billet, C.

Chudoba, C.

Cundiff, T.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Desaix, M.

Diddams, S. A.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

DiMarcello, F.

Dorrer, C.

Dudley, J. M.

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Finot, C.

Fleming, J.

Fujimoto, J. G.

Ghanta, R. K.

Hall, J. L.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Hanch, T. W.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Hartl, I.

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Hirooka, T.

Holzwarth, R.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Ibsen, M.

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, "Pulse Retiming Based on XPM Using Parabolic Pulses Formed in a Fiber Bragg Grating," IEEE Photon. Technol. Lett. 18, 829-831 (2006).
[CrossRef]

Joly, N.

Jones, D. J.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Jorgensen, C.

Kang, I.

Karlsson, M.

Kikuchi, K.

Y. Takushima, and K. Kikuchi, "10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber," IEEE Photon. Technol. Lett. 11, 322-324 (1999).
[CrossRef]

Knight, J. C.

Ko, T. H.

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Li, X. D.

Lisak, M.

Millot, G.

Monberg, E.

Nakazawa, M.

Nicholson, J. W.

Parmigiani, F.

C. Finot, F. Parmigiani, P. Petropoulos, and D. J. Richardson, "Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime," Opt. Express 14, 3161-3170 (2006).
[CrossRef] [PubMed]

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, "Pulse Retiming Based on XPM Using Parabolic Pulses Formed in a Fiber Bragg Grating," IEEE Photon. Technol. Lett. 18, 829-831 (2006).
[CrossRef]

Petropoulos, P.

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, "Pulse Retiming Based on XPM Using Parabolic Pulses Formed in a Fiber Bragg Grating," IEEE Photon. Technol. Lett. 18, 829-831 (2006).
[CrossRef]

C. Finot, F. Parmigiani, P. Petropoulos, and D. J. Richardson, "Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime," Opt. Express 14, 3161-3170 (2006).
[CrossRef] [PubMed]

Quiroga-Teixeiro, M. L.

Ranka, J. K.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Richardson, D. J.

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, "Pulse Retiming Based on XPM Using Parabolic Pulses Formed in a Fiber Bragg Grating," IEEE Photon. Technol. Lett. 18, 829-831 (2006).
[CrossRef]

C. Finot, F. Parmigiani, P. Petropoulos, and D. J. Richardson, "Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime," Opt. Express 14, 3161-3170 (2006).
[CrossRef] [PubMed]

B. C. Thomsen, M. A. F. Roelens, R. T. Watts, D. J. Richardson, "Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications," IEEE Photon. Technol. Lett. 17, 1914-1916 (2005).
[CrossRef]

Roelens, M. A. F.

B. C. Thomsen, M. A. F. Roelens, R. T. Watts, D. J. Richardson, "Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications," IEEE Photon. Technol. Lett. 17, 1914-1916 (2005).
[CrossRef]

Takushima, Y.

Y. Takushima, and K. Kikuchi, "10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber," IEEE Photon. Technol. Lett. 11, 322-324 (1999).
[CrossRef]

Thomsen, B. C.

B. C. Thomsen, M. A. F. Roelens, R. T. Watts, D. J. Richardson, "Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications," IEEE Photon. Technol. Lett. 17, 1914-1916 (2005).
[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Udem, T.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Veng, T.

Watts, R. T.

B. C. Thomsen, M. A. F. Roelens, R. T. Watts, D. J. Richardson, "Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications," IEEE Photon. Technol. Lett. 17, 1914-1916 (2005).
[CrossRef]

Windeler, R. S.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001).
[CrossRef]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Wisk, P.

Yablon, A.

Yan, M. F.

Ye, J.

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (3)

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, "Pulse Retiming Based on XPM Using Parabolic Pulses Formed in a Fiber Bragg Grating," IEEE Photon. Technol. Lett. 18, 829-831 (2006).
[CrossRef]

B. C. Thomsen, M. A. F. Roelens, R. T. Watts, D. J. Richardson, "Comparison between nonlinear and linear spectrographic techniques for the complete characterization of high bit-rate pulses used in optical communications," IEEE Photon. Technol. Lett. 17, 1914-1916 (2005).
[CrossRef]

Y. Takushima, and K. Kikuchi, "10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber," IEEE Photon. Technol. Lett. 11, 322-324 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-similar propagation and amplification of parabolic pulses in optical fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

S. A. Diddams, D. J. Jones, J. Ye, T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hanch, "Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb," Phys. Rev. Lett. 84, 5102-5105 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental set-up.

Fig. 2.
Fig. 2.

(a) Experimental (gray dashed line), calculated (solid blue line) and EAM-FROG retrieved (black dashed line) spectra of the parabolic pulses. (b) Intensity and phase of the parabolic pulses measured using EAM-FROG; the measured intensity profile is fitted to an ideal parabolic pulse (circles). Spectral (c) and temporal (d) intensity profiles of the 2ps and 10ps sech pulses using SHG-FROG.

Fig. 3.
Fig. 3.

(a) Numerical and experimental FWHM spectral width versus energy level for parabolic pulses (blue line and diamonds), 10 ps sech (green line and diamonds), and 2 ps sech (red line and diamonds). (b) Numerical and experimental energy percentage stored in the central part of the spectra (3 dB bandwidth), versus energy level. The same conventions hold for all these figures. (c) Experimental spectra after the HNLF for 10 ps parabolic, 10 ps- and 2 ps- sech pulses. Spectral traces are normalized with respect to their total energy (linear scale). (d) Experimental (solid line) and simulated (dashed line) spectra of the parabolic pulses.

Fig. 4.
Fig. 4.

(a) Superposition of the measured sliced spectra together with the complete spectrum of the parabolic pulse plotted on the logarithmic scale (Res=0.5nm). (b) Measured pulsewidths and time-bandwidth product values for the filtered channels. (c) Example of a FROG retrieved pulse shape and chirp of a filtered output channel (Ch.6). (d-f) Oscilloscope traces of three sampled channels.

Fig. 5.
Fig. 5.

Measured autocorrelation traces of the initial parabolic pulse (black dash line) and the pulse after fiber compression (blue trace) along with the corresponding numerically compressed pulse autocorrelation profile (red trace). Inset numerically compressed pulse shape.

Metrics