Abstract

We demonstrate experimentally ultrafast inverted and non-inverted wavelength conversion (WC) based on a semiconductor optical amplifier (SOA) and an optical bandpass filter (OBF). In the case of small detuning, the WC is inverted regardless if the OBF is blue- or red-shifted with respect to the central wavelength of the converted signal. However the WC is non-inverted when the filter detuning is relatively large. An analytical formula for the transient cross phase modulation is applied to reveal the polarity variation of WC with respect to the OBF detuning. The theoretical detuning values are in good agreement with our experimental results.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Houbavlis, K. E. Zoiros, M. Kalyvas, G. Theophilopoulos, and C. Bintjas, "All-optical signal processing and applications within the esprit project DO_ALL," J. Lightwave Technol. 23, 781-801 (2005).
    [CrossRef]
  2. S. Nakamura and K. Tajima, "Ultrafast all-optical gate switch based on frequency shift accompanied by semiconductor band-filling effect," Appl. Phys. Lett. 70, 3498-3500 (1997).
    [CrossRef]
  3. S. Nakamura, Y. Ueno, and K. Tajima, "Ultrafast all-optical switching based on frequency shift accompanied by the semiconductor band-filling effect," IEEE LEOS ' 98. 160-161 (1998).
  4. J. Leuthold, D. M. Marom, S. Cabot, J. J. Jaques, and R. Ryf, "All-optical wavelength conversion using a pulse reformatting optical filter," J. Lightwave Technol. 22, 186-192 (2004).
    [CrossRef]
  5. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, and H. deWaardt, "Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave Technol. 24, 230-236 (2006).
    [CrossRef]
  6. Y. Liu, E. Tangdiongga, Z. Li, H. deWaardt, and A. M. J. Koonen, "Error-free 320 Gb/s SOA-based wavelength conversion using optical filtering," OFC 2006 PDP28 (2006).
  7. M. L. Nielsen, B. Lavigne, and B. Dagens, "Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering," Electron. Lett. 39, 1334 - 1335 (2003).
    [CrossRef]
  8. J. Dong, S. Fu, P. Shum, X. Zhang, H. Liu, and D. Huang, "Modeling of SOA-based high speed all-optical wavelength conversion with optical filter assistance," IEEE NUSOD 2006 WA4 (2006)
  9. J. Dong, X. Zhang, Z. Jiang, and D. Huang, "Theoretical and experimental study on all-optical wavelength converters based on the single-port-coupled SOA," Optical and Quantum Electron. 37, 1011-1023 (2005).
    [CrossRef]

2006 (3)

Y. Liu, E. Tangdiongga, Z. Li, H. deWaardt, and A. M. J. Koonen, "Error-free 320 Gb/s SOA-based wavelength conversion using optical filtering," OFC 2006 PDP28 (2006).

J. Dong, S. Fu, P. Shum, X. Zhang, H. Liu, and D. Huang, "Modeling of SOA-based high speed all-optical wavelength conversion with optical filter assistance," IEEE NUSOD 2006 WA4 (2006)

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, and H. deWaardt, "Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave Technol. 24, 230-236 (2006).
[CrossRef]

2005 (2)

T. Houbavlis, K. E. Zoiros, M. Kalyvas, G. Theophilopoulos, and C. Bintjas, "All-optical signal processing and applications within the esprit project DO_ALL," J. Lightwave Technol. 23, 781-801 (2005).
[CrossRef]

J. Dong, X. Zhang, Z. Jiang, and D. Huang, "Theoretical and experimental study on all-optical wavelength converters based on the single-port-coupled SOA," Optical and Quantum Electron. 37, 1011-1023 (2005).
[CrossRef]

2004 (1)

2003 (1)

M. L. Nielsen, B. Lavigne, and B. Dagens, "Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering," Electron. Lett. 39, 1334 - 1335 (2003).
[CrossRef]

1998 (1)

S. Nakamura, Y. Ueno, and K. Tajima, "Ultrafast all-optical switching based on frequency shift accompanied by the semiconductor band-filling effect," IEEE LEOS ' 98. 160-161 (1998).

1997 (1)

S. Nakamura and K. Tajima, "Ultrafast all-optical gate switch based on frequency shift accompanied by semiconductor band-filling effect," Appl. Phys. Lett. 70, 3498-3500 (1997).
[CrossRef]

Bintjas, C.

Cabot, S.

Dagens, B.

M. L. Nielsen, B. Lavigne, and B. Dagens, "Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering," Electron. Lett. 39, 1334 - 1335 (2003).
[CrossRef]

deWaardt, H.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, and H. deWaardt, "Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave Technol. 24, 230-236 (2006).
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, H. deWaardt, and A. M. J. Koonen, "Error-free 320 Gb/s SOA-based wavelength conversion using optical filtering," OFC 2006 PDP28 (2006).

Dong, J.

J. Dong, S. Fu, P. Shum, X. Zhang, H. Liu, and D. Huang, "Modeling of SOA-based high speed all-optical wavelength conversion with optical filter assistance," IEEE NUSOD 2006 WA4 (2006)

J. Dong, X. Zhang, Z. Jiang, and D. Huang, "Theoretical and experimental study on all-optical wavelength converters based on the single-port-coupled SOA," Optical and Quantum Electron. 37, 1011-1023 (2005).
[CrossRef]

Fu, S.

J. Dong, S. Fu, P. Shum, X. Zhang, H. Liu, and D. Huang, "Modeling of SOA-based high speed all-optical wavelength conversion with optical filter assistance," IEEE NUSOD 2006 WA4 (2006)

Houbavlis, T.

Huang, D.

J. Dong, S. Fu, P. Shum, X. Zhang, H. Liu, and D. Huang, "Modeling of SOA-based high speed all-optical wavelength conversion with optical filter assistance," IEEE NUSOD 2006 WA4 (2006)

J. Dong, X. Zhang, Z. Jiang, and D. Huang, "Theoretical and experimental study on all-optical wavelength converters based on the single-port-coupled SOA," Optical and Quantum Electron. 37, 1011-1023 (2005).
[CrossRef]

Jaques, J. J.

Jiang, Z.

J. Dong, X. Zhang, Z. Jiang, and D. Huang, "Theoretical and experimental study on all-optical wavelength converters based on the single-port-coupled SOA," Optical and Quantum Electron. 37, 1011-1023 (2005).
[CrossRef]

Kalyvas, M.

Koonen, A. M. J.

Y. Liu, E. Tangdiongga, Z. Li, H. deWaardt, and A. M. J. Koonen, "Error-free 320 Gb/s SOA-based wavelength conversion using optical filtering," OFC 2006 PDP28 (2006).

Lavigne, B.

M. L. Nielsen, B. Lavigne, and B. Dagens, "Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering," Electron. Lett. 39, 1334 - 1335 (2003).
[CrossRef]

Leuthold, J.

Li, Z.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, and H. deWaardt, "Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave Technol. 24, 230-236 (2006).
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, H. deWaardt, and A. M. J. Koonen, "Error-free 320 Gb/s SOA-based wavelength conversion using optical filtering," OFC 2006 PDP28 (2006).

Liu, H.

J. Dong, S. Fu, P. Shum, X. Zhang, H. Liu, and D. Huang, "Modeling of SOA-based high speed all-optical wavelength conversion with optical filter assistance," IEEE NUSOD 2006 WA4 (2006)

Liu, Y.

Y. Liu, E. Tangdiongga, Z. Li, H. deWaardt, and A. M. J. Koonen, "Error-free 320 Gb/s SOA-based wavelength conversion using optical filtering," OFC 2006 PDP28 (2006).

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, and H. deWaardt, "Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave Technol. 24, 230-236 (2006).
[CrossRef]

Marom, D. M.

Nakamura, S.

S. Nakamura, Y. Ueno, and K. Tajima, "Ultrafast all-optical switching based on frequency shift accompanied by the semiconductor band-filling effect," IEEE LEOS ' 98. 160-161 (1998).

S. Nakamura and K. Tajima, "Ultrafast all-optical gate switch based on frequency shift accompanied by semiconductor band-filling effect," Appl. Phys. Lett. 70, 3498-3500 (1997).
[CrossRef]

Nielsen, M. L.

M. L. Nielsen, B. Lavigne, and B. Dagens, "Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering," Electron. Lett. 39, 1334 - 1335 (2003).
[CrossRef]

Ryf, R.

Shum, P.

J. Dong, S. Fu, P. Shum, X. Zhang, H. Liu, and D. Huang, "Modeling of SOA-based high speed all-optical wavelength conversion with optical filter assistance," IEEE NUSOD 2006 WA4 (2006)

Tajima, K.

S. Nakamura, Y. Ueno, and K. Tajima, "Ultrafast all-optical switching based on frequency shift accompanied by the semiconductor band-filling effect," IEEE LEOS ' 98. 160-161 (1998).

S. Nakamura and K. Tajima, "Ultrafast all-optical gate switch based on frequency shift accompanied by semiconductor band-filling effect," Appl. Phys. Lett. 70, 3498-3500 (1997).
[CrossRef]

Tangdiongga, E.

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, and H. deWaardt, "Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave Technol. 24, 230-236 (2006).
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, H. deWaardt, and A. M. J. Koonen, "Error-free 320 Gb/s SOA-based wavelength conversion using optical filtering," OFC 2006 PDP28 (2006).

Theophilopoulos, G.

Ueno, Y.

S. Nakamura, Y. Ueno, and K. Tajima, "Ultrafast all-optical switching based on frequency shift accompanied by the semiconductor band-filling effect," IEEE LEOS ' 98. 160-161 (1998).

Zhang, S.

Zhang, X.

J. Dong, S. Fu, P. Shum, X. Zhang, H. Liu, and D. Huang, "Modeling of SOA-based high speed all-optical wavelength conversion with optical filter assistance," IEEE NUSOD 2006 WA4 (2006)

J. Dong, X. Zhang, Z. Jiang, and D. Huang, "Theoretical and experimental study on all-optical wavelength converters based on the single-port-coupled SOA," Optical and Quantum Electron. 37, 1011-1023 (2005).
[CrossRef]

Zoiros, K. E.

Appl. Phys. Lett. (1)

S. Nakamura and K. Tajima, "Ultrafast all-optical gate switch based on frequency shift accompanied by semiconductor band-filling effect," Appl. Phys. Lett. 70, 3498-3500 (1997).
[CrossRef]

Electron. Lett. (1)

M. L. Nielsen, B. Lavigne, and B. Dagens, "Polarity-preserving SOA-based wavelength conversion at 40 Gbit/s using bandpass filtering," Electron. Lett. 39, 1334 - 1335 (2003).
[CrossRef]

IEEE LEOS (1)

S. Nakamura, Y. Ueno, and K. Tajima, "Ultrafast all-optical switching based on frequency shift accompanied by the semiconductor band-filling effect," IEEE LEOS ' 98. 160-161 (1998).

IEEE NUSOD (1)

J. Dong, S. Fu, P. Shum, X. Zhang, H. Liu, and D. Huang, "Modeling of SOA-based high speed all-optical wavelength conversion with optical filter assistance," IEEE NUSOD 2006 WA4 (2006)

J. Lightwave Technol. (3)

OFC (1)

Y. Liu, E. Tangdiongga, Z. Li, H. deWaardt, and A. M. J. Koonen, "Error-free 320 Gb/s SOA-based wavelength conversion using optical filtering," OFC 2006 PDP28 (2006).

Optical and Quantum Electron. (1)

J. Dong, X. Zhang, Z. Jiang, and D. Huang, "Theoretical and experimental study on all-optical wavelength converters based on the single-port-coupled SOA," Optical and Quantum Electron. 37, 1011-1023 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram for inverted and non-inverted wavelength conversion based on SOA and optical bandpass filter. (a) Setup for wavelength conversion. (b) The optical spectrum of the input probe signal and the filter shape.

Fig. 2.
Fig. 2.

Experimental setup of wavelength conversion based on a SOA followed by an OBF. AMLFRL: actively mode-locked fiber laser; MOD: modulator; EDFA: erbium-doped fiber amplifier; OC: optical coupler; ISO: isolator; SOA: semiconductor optical amplifier; OBF: optical bandpass filter; OSA: optical spectrum analyzer; CSA: communication signal analyzer; PPG: pulse pattern generator; SSG: synthesized signal generator.

Fig. 3.
Fig. 3.

The optical spectrum measurement at the different position of Fig. 2

Fig. 4.
Fig. 4.

The wavelength conversion results with respect to the different detuning value of filter when the input data stream is “11101010”. (a) Original waveform of input signal; (b) inverted wavelength conversion on the condition of no filter detuning; (c) inverted wavelength conversion on the condition of filter blue-shifted 0.08nm; (d) non-inverted wavelength conversion on the condition of filter blue-shifted 0.3nm; (e) inverted wavelength conversion on the condition of filter red-shifted 0.05nm; and (f) non-inverted wavelength conversion on the condition of filter red-shifted 0.25nm.

Fig. 4.
Fig. 4.

The waveform evolutions of the output converted signal with respect to the filter detuning value

Tables (1)

Tables Icon

Table 1. The filter detuning value comparison between experiments and calculations based on Eq. (1).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P out ( t ) = P in exp [ ( 4 ln 2 ) ( ν f ν 0 Δ ν ( t ) B 3 dB ) 2 ] [ g 2 ( t ) + g′ ( t ) 2 ( 2 ln 2 ν f ν 0 Δν ( t ) π B 3 dB 2 ) 2 ]

Metrics