Abstract

Laser speckle velocimetry (LSV) is presented to measure the velocities of nanoparticles in nanofluids and its feasibility is verified in this paper. An optical scattering model of a single nanoparticle is developed and numerical computations are done to simulate the formation of the speckles by the addition of the complex amplitudes of the scattering lights from multiple nanoparticles. Then relative experiments are done to form speckles when nanofluids are illuminated by a laser beam. The results of the experiments are in agreement with the numerical results, which verify the feasibility of utilizing LSV to measure the velocities of nanoparticles in nanofluids.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. S. Choi, "Enhancing thermal conductivity of fluids with nanoparticles," ASME Fed. 231, 99-103 (1995).
  2. P. Vadasz, "Heat conduction in nanofluid suspensions," J. Heat Transfer. 128, 465-477 (2006).
    [CrossRef]
  3. Y. M. Xuan and W. Roetzel, "Conceptions for heat transfer correlation of nanofluids," Int. J. Heat Mass Transfer. 43, 3701-3707 (2000).
    [CrossRef]
  4. S. P. Jang and S. U. S. Choi, "Role of Brownian motion in the enhanced thermal conductivity of nanofluids," Appl. Phys. Lett. 84, 4316-4318 (2004).
    [CrossRef]
  5. R. Prasher, P. Brattacharya and P. E. Phelan, "Thermal conductivity of nanoscale colloidal solutions (nanofluids)," Phys. Rev. Lett. 94, 025901 (2005).
    [CrossRef] [PubMed]
  6. W. Evans, J. Fish and P. Keblinski, "Role of Brownian motion hydrodynamics on nanofluid thermal conductivity," Appl. Phys. Lett. 88, 093116 (2006).
    [CrossRef]
  7. H. W. Tang, Y. Yang and Y. R. Xu, "Study of several key techniques in PIV system," in Optical Measurement and Nondestructive Testing: Techniques and Applications; F. Song, F. Chen, M. Y.Y. Hung, and H. M. Shang; eds., Proc. SPIE 4221, 361-365 (2000).
    [CrossRef]
  8. L. GmbH and A. V. Ring, "Visualization and PIV measurement of high-speed flows and other phenomena with novel ultra-high-speed CCD camera," in 25th International Congress on High-Speed Photography and Photonics; C. Cavailler, G. P. Haddleton, M. Hugenschmidt, eds., Proc. SPIE 4948, 671-676 (2003).
    [CrossRef]
  9. A. Algieri, S. Bova and C. D. Bartolo, "Experimental and numerical investigation on the effects of the seeding properties on LDA measurements," J. Fluid Eng-T ASME 127, 514-522 (2005).
    [CrossRef]
  10. S. J. Muller, "Velocity measurements in complex flows of non-Newtonian fluids," Korea-Aust Rheo. J. 14, 93-105 (2002).
  11. M. Kowalczyk, "Laser speckle velocimetry," in Optical Velocimetry; M. Pluta, J. K. Jabczynski, M. Szyjer; eds., Proc. SPIE 2729, 139-145 (1996).
    [CrossRef]
  12. M. Kowalczyk, "Speckle velocimetry of diffuse objects under illumination of a TEM10 laser beam," in Optical Velocimetry, M. Pluta, J. K. Jabczynski, and M. Szyjer, eds., Proc. SPIE 2729, 146-154 (1996).
    [CrossRef]
  13. J. D. Briers, "Time-varying laser speckle for measuring motion and flow," in Saratov Fall Meeting 2000: Coherent Optics of Ordered and Random Media, D. A. Zimnyakov, ed., Proc. SPIE 4242, 25-39 (2001).
    [CrossRef]
  14. J. D. Briers, "Laser Doppler and time-varing speckle: a reconciliation," J. Opt. Soc. Am. A 13, 345-350 (1996).
    [CrossRef]
  15. R. J. Adrian and C. S. Yao, "Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials," Appl. Opt. 24, 44-52 (1985).
    [CrossRef] [PubMed]
  16. E. J. McCartey, Optics of the atmosphere -Scattering by molecules and particles (John Wiley & Sons, Inc. 1976).

2006 (2)

P. Vadasz, "Heat conduction in nanofluid suspensions," J. Heat Transfer. 128, 465-477 (2006).
[CrossRef]

W. Evans, J. Fish and P. Keblinski, "Role of Brownian motion hydrodynamics on nanofluid thermal conductivity," Appl. Phys. Lett. 88, 093116 (2006).
[CrossRef]

2005 (2)

R. Prasher, P. Brattacharya and P. E. Phelan, "Thermal conductivity of nanoscale colloidal solutions (nanofluids)," Phys. Rev. Lett. 94, 025901 (2005).
[CrossRef] [PubMed]

A. Algieri, S. Bova and C. D. Bartolo, "Experimental and numerical investigation on the effects of the seeding properties on LDA measurements," J. Fluid Eng-T ASME 127, 514-522 (2005).
[CrossRef]

2004 (1)

S. P. Jang and S. U. S. Choi, "Role of Brownian motion in the enhanced thermal conductivity of nanofluids," Appl. Phys. Lett. 84, 4316-4318 (2004).
[CrossRef]

2000 (2)

Y. M. Xuan and W. Roetzel, "Conceptions for heat transfer correlation of nanofluids," Int. J. Heat Mass Transfer. 43, 3701-3707 (2000).
[CrossRef]

H. W. Tang, Y. Yang and Y. R. Xu, "Study of several key techniques in PIV system," in Optical Measurement and Nondestructive Testing: Techniques and Applications; F. Song, F. Chen, M. Y.Y. Hung, and H. M. Shang; eds., Proc. SPIE 4221, 361-365 (2000).
[CrossRef]

1996 (2)

M. Kowalczyk, "Laser speckle velocimetry," in Optical Velocimetry; M. Pluta, J. K. Jabczynski, M. Szyjer; eds., Proc. SPIE 2729, 139-145 (1996).
[CrossRef]

J. D. Briers, "Laser Doppler and time-varing speckle: a reconciliation," J. Opt. Soc. Am. A 13, 345-350 (1996).
[CrossRef]

1995 (1)

U. S. Choi, "Enhancing thermal conductivity of fluids with nanoparticles," ASME Fed. 231, 99-103 (1995).

1985 (1)

Adrian, R. J.

Algieri, A.

A. Algieri, S. Bova and C. D. Bartolo, "Experimental and numerical investigation on the effects of the seeding properties on LDA measurements," J. Fluid Eng-T ASME 127, 514-522 (2005).
[CrossRef]

Bartolo, C. D.

A. Algieri, S. Bova and C. D. Bartolo, "Experimental and numerical investigation on the effects of the seeding properties on LDA measurements," J. Fluid Eng-T ASME 127, 514-522 (2005).
[CrossRef]

Bova, S.

A. Algieri, S. Bova and C. D. Bartolo, "Experimental and numerical investigation on the effects of the seeding properties on LDA measurements," J. Fluid Eng-T ASME 127, 514-522 (2005).
[CrossRef]

Brattacharya, P.

R. Prasher, P. Brattacharya and P. E. Phelan, "Thermal conductivity of nanoscale colloidal solutions (nanofluids)," Phys. Rev. Lett. 94, 025901 (2005).
[CrossRef] [PubMed]

Briers, J. D.

Choi, S. U. S.

S. P. Jang and S. U. S. Choi, "Role of Brownian motion in the enhanced thermal conductivity of nanofluids," Appl. Phys. Lett. 84, 4316-4318 (2004).
[CrossRef]

Choi, U. S.

U. S. Choi, "Enhancing thermal conductivity of fluids with nanoparticles," ASME Fed. 231, 99-103 (1995).

Evans, W.

W. Evans, J. Fish and P. Keblinski, "Role of Brownian motion hydrodynamics on nanofluid thermal conductivity," Appl. Phys. Lett. 88, 093116 (2006).
[CrossRef]

Fish, J.

W. Evans, J. Fish and P. Keblinski, "Role of Brownian motion hydrodynamics on nanofluid thermal conductivity," Appl. Phys. Lett. 88, 093116 (2006).
[CrossRef]

Jang, S. P.

S. P. Jang and S. U. S. Choi, "Role of Brownian motion in the enhanced thermal conductivity of nanofluids," Appl. Phys. Lett. 84, 4316-4318 (2004).
[CrossRef]

Keblinski, P.

W. Evans, J. Fish and P. Keblinski, "Role of Brownian motion hydrodynamics on nanofluid thermal conductivity," Appl. Phys. Lett. 88, 093116 (2006).
[CrossRef]

Kowalczyk, M.

M. Kowalczyk, "Laser speckle velocimetry," in Optical Velocimetry; M. Pluta, J. K. Jabczynski, M. Szyjer; eds., Proc. SPIE 2729, 139-145 (1996).
[CrossRef]

Phelan, P. E.

R. Prasher, P. Brattacharya and P. E. Phelan, "Thermal conductivity of nanoscale colloidal solutions (nanofluids)," Phys. Rev. Lett. 94, 025901 (2005).
[CrossRef] [PubMed]

Prasher, R.

R. Prasher, P. Brattacharya and P. E. Phelan, "Thermal conductivity of nanoscale colloidal solutions (nanofluids)," Phys. Rev. Lett. 94, 025901 (2005).
[CrossRef] [PubMed]

Roetzel, W.

Y. M. Xuan and W. Roetzel, "Conceptions for heat transfer correlation of nanofluids," Int. J. Heat Mass Transfer. 43, 3701-3707 (2000).
[CrossRef]

Tang, H. W.

H. W. Tang, Y. Yang and Y. R. Xu, "Study of several key techniques in PIV system," in Optical Measurement and Nondestructive Testing: Techniques and Applications; F. Song, F. Chen, M. Y.Y. Hung, and H. M. Shang; eds., Proc. SPIE 4221, 361-365 (2000).
[CrossRef]

Vadasz, P.

P. Vadasz, "Heat conduction in nanofluid suspensions," J. Heat Transfer. 128, 465-477 (2006).
[CrossRef]

Xu, Y. R.

H. W. Tang, Y. Yang and Y. R. Xu, "Study of several key techniques in PIV system," in Optical Measurement and Nondestructive Testing: Techniques and Applications; F. Song, F. Chen, M. Y.Y. Hung, and H. M. Shang; eds., Proc. SPIE 4221, 361-365 (2000).
[CrossRef]

Xuan, Y. M.

Y. M. Xuan and W. Roetzel, "Conceptions for heat transfer correlation of nanofluids," Int. J. Heat Mass Transfer. 43, 3701-3707 (2000).
[CrossRef]

Yang, Y.

H. W. Tang, Y. Yang and Y. R. Xu, "Study of several key techniques in PIV system," in Optical Measurement and Nondestructive Testing: Techniques and Applications; F. Song, F. Chen, M. Y.Y. Hung, and H. M. Shang; eds., Proc. SPIE 4221, 361-365 (2000).
[CrossRef]

Yao, C. S.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. P. Jang and S. U. S. Choi, "Role of Brownian motion in the enhanced thermal conductivity of nanofluids," Appl. Phys. Lett. 84, 4316-4318 (2004).
[CrossRef]

W. Evans, J. Fish and P. Keblinski, "Role of Brownian motion hydrodynamics on nanofluid thermal conductivity," Appl. Phys. Lett. 88, 093116 (2006).
[CrossRef]

ASME Fed. (1)

U. S. Choi, "Enhancing thermal conductivity of fluids with nanoparticles," ASME Fed. 231, 99-103 (1995).

Int. J. Heat Mass Transfer. (1)

Y. M. Xuan and W. Roetzel, "Conceptions for heat transfer correlation of nanofluids," Int. J. Heat Mass Transfer. 43, 3701-3707 (2000).
[CrossRef]

J. Fluid Eng-T ASME (1)

A. Algieri, S. Bova and C. D. Bartolo, "Experimental and numerical investigation on the effects of the seeding properties on LDA measurements," J. Fluid Eng-T ASME 127, 514-522 (2005).
[CrossRef]

J. Heat Transfer. (1)

P. Vadasz, "Heat conduction in nanofluid suspensions," J. Heat Transfer. 128, 465-477 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Phys. Rev. Lett. (1)

R. Prasher, P. Brattacharya and P. E. Phelan, "Thermal conductivity of nanoscale colloidal solutions (nanofluids)," Phys. Rev. Lett. 94, 025901 (2005).
[CrossRef] [PubMed]

Proc. SPIE (2)

H. W. Tang, Y. Yang and Y. R. Xu, "Study of several key techniques in PIV system," in Optical Measurement and Nondestructive Testing: Techniques and Applications; F. Song, F. Chen, M. Y.Y. Hung, and H. M. Shang; eds., Proc. SPIE 4221, 361-365 (2000).
[CrossRef]

M. Kowalczyk, "Laser speckle velocimetry," in Optical Velocimetry; M. Pluta, J. K. Jabczynski, M. Szyjer; eds., Proc. SPIE 2729, 139-145 (1996).
[CrossRef]

Other (5)

M. Kowalczyk, "Speckle velocimetry of diffuse objects under illumination of a TEM10 laser beam," in Optical Velocimetry, M. Pluta, J. K. Jabczynski, and M. Szyjer, eds., Proc. SPIE 2729, 146-154 (1996).
[CrossRef]

J. D. Briers, "Time-varying laser speckle for measuring motion and flow," in Saratov Fall Meeting 2000: Coherent Optics of Ordered and Random Media, D. A. Zimnyakov, ed., Proc. SPIE 4242, 25-39 (2001).
[CrossRef]

E. J. McCartey, Optics of the atmosphere -Scattering by molecules and particles (John Wiley & Sons, Inc. 1976).

L. GmbH and A. V. Ring, "Visualization and PIV measurement of high-speed flows and other phenomena with novel ultra-high-speed CCD camera," in 25th International Congress on High-Speed Photography and Photonics; C. Cavailler, G. P. Haddleton, M. Hugenschmidt, eds., Proc. SPIE 4948, 671-676 (2003).
[CrossRef]

S. J. Muller, "Velocity measurements in complex flows of non-Newtonian fluids," Korea-Aust Rheo. J. 14, 93-105 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Electric dipole model for Rayleigh scattering.

Fig. 2.
Fig. 2.

Polarization of the scattering light when the incident light is Y axis polarized.

Fig. 3.
Fig. 3.

Polarization of the scattering light when the incident light is X axis polarized.

Fig. 4.
Fig. 4.

Computational model.

Fig. 5.
Fig. 5.

Intensity distribution at two different moments when the thickness of the vessel is 10μm.

Fig. 6.
Fig. 6.

Experimental setup.

Fig. 7.
Fig. 7.

Part of a typical speckle pattern.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

P ( t ) = e 2 m 1 ω 0 2 ω 2 E 0 exp ( iωt ) .
E = 1 4 π ε 0 c 2 [ p ̈ ( t R c ) × R ] × R R 3 .
p ̈ ( t ) = e 2 m ω 2 ω 0 2 ω 2 E 0 exp ( iωt ) .
E S = π E 0 ε 0 λ 2 e 2 m ( m 0 2 ω 2 ) sin ϕ R exp [ i ( ωt k R ) ] ( p 0 × n × n ) .
E s = E c sin ϕ R cos kR .
E X = E S cos ϕ Y sin θ Y = 2 2 E C x 0 y 0 R 3 cos kR .
E Y = E S sin ϕ Y = 2 2 E C x 0 2 + z 0 2 R 3 cos kR .
E Z = E S cos ϕ Y sin θ Y = 2 2 E C y 0 z 0 R 3 cos kR .
E X = E S sin ϕ X = 2 2 E C y 0 2 + z 0 2 R 3 cos kR .
E Y = E S cos ϕ X sin θ X = 2 2 E C x 0 y 0 R 3 cos kR .
E Z = E S cos ϕ X cos θ X = 2 2 E C x 0 z 0 R 3 cos kR .
E X = 2 2 E C x 0 y 0 + y 0 2 + z 0 2 R 3 cos kR .
E Y = 2 2 E C x 0 y 0 + x 0 2 + z 0 2 R 3 cos kR .
E Z = 2 2 E C x 0 y 0 + y 0 z 0 R 3 cos kR .
E = i n = 1 n = N E nX + j n = 1 n = N E nY + k n = 1 n = N E nZ .

Metrics