Abstract

The lack of a primary method for determination of optical parameters remains a significant barrier in optical study of turbid media. We present a complete system of experimental setups and Monte Carlo modeling tools for fast and accurate solution of the inverse problem from the measured signals of homogeneous turbid samples. The calibration of the instrument and validation of the Monte Carlo modeling have been carried out to ensure the accuracy of the inverse solution. We applied this method to determine the optical parameters of turbid media of 10% intralipid between 550 and 940nm and 20% intralipid between 550 and 1630nm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. van de Hulst, Multiple light scattering: tables, formulas, and applications, Vol. 1 & 2. (Academic Press, New York, 1980).
  2. M. Born, E. Wolf, and A. B. Bhatia, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th ed. (Cambridge University Press, Cambridge, England, 1999).
  3. H. Ding, J. Q. Lu, K. M. Jacobs, and X. H. Hu, "Determination of refractive indices of porcine skin tissues and intralipid at eight wavelengths between 325 and 1557nm," J. Opt. Soc. Am. A 22, 1151-1157 (2005).
    [CrossRef]
  4. L. G. Henyey, and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys J 93, 70-83 (1941).
    [CrossRef]
  5. S. L. Jacques, C. A. Alter, and S. A. Prahl, "Angular dependence of HeNe laser light scattering by human dermis," Lasers Life Sci. 1, 309-333 (1987).
  6. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, "Optical properties of normal and diseased human breast tissues in the visible and near infrared," Phys. Med. Biol. 35, 1317-34 (1990).
    [CrossRef] [PubMed]
  7. S. A. Prahl, M. J. C. van Gemert,and A. J. Welch, "Determining the optical properties of turbid media by using the adding-doubling method," Appl. Opt. 32, 559-568 (1993).
    [CrossRef] [PubMed]
  8. I. V. Yaroslavsky, A. N. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, "Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements," Appl. Opt. 35, 6797-6809 (1996).
    [CrossRef] [PubMed]
  9. C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, "Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media," Appl Opt 43, 4677-84 (2004).
    [CrossRef] [PubMed]
  10. A. H. Hielscher, J. R. Mourant,and I. J. Bigio, "Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions," Appl. Opt. 36, 125-136 (1997).
    [CrossRef] [PubMed]
  11. Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, "Optical properties of porcine skin dermis between 900 nm and 1500 nm," Phys. Med. Biol. 46, 167-81 (2001).
    [CrossRef] [PubMed]
  12. X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, "Determination of complex refractive index of Polystyrene Microspheres from 370 to 1610nm," Phys. Med. Biol. 48, 4165-4172 (2003).
    [CrossRef]
  13. A. Roos, "Interpretation of integrating sphere signal output for nonideal transmitting samples," Appl. Opt. 30, 468-474 (1991).
    [CrossRef] [PubMed]
  14. J. W. Pickering, S. A. Prahl, N. Vanwieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. Vangemert, "Double-integrating-sphere system for measuring the optical-properties of tissue," Appl. Opt. 32, 399-410 (1993).
    [CrossRef] [PubMed]
  15. L. Wang, S. L. Jacques, and L. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Comput Methods Programs Biomed 47, 131-46 (1995).
    [CrossRef] [PubMed]
  16. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-9 (1992).
    [CrossRef] [PubMed]
  17. S. T. Flock, "The Optical Properties of Tissues and Light Dosimetry," (Hamilton, Ontario, Canada, McMaster University, 1988).
  18. C. J. M. Moes, M. J. C. van Gemert, W. M. Star, J. P. A. Marijnissen, and S. A. Prahl, "Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm," Appl. Opt. 28, 2292-2296 (1989).
    [CrossRef] [PubMed]
  19. H. G. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nanometers," Appl. Opt. 30, 4507-4514 (1991).
    [CrossRef] [PubMed]
  20. S. L. Jacques, "Optical properties of "Intralipid", an aqueous suspension of lipid droplet," (Oregon Medical Laser Center, 1998), http://omlc.ogi.edu/spectra/intralipid/index.html.
  21. C. Chen, J. Q. Lu, and X. H. Hu, "OPDISM - Optical Parameters Determined by Integrating Sphere Measurement," (Biomedical Laser Laboratory, 2006), http://bmlaser.physics.ecu.edu.
  22. M. C. Wang,E. Guth, "On the theory of multiple scattering, particularly of charged particles," Phys. Rev. 84, 1093-1111 (1951).
    [CrossRef]
  23. A. A. Kokhanovsky, "Small-angle approximations of the radiative transfer theory," J. Phys. D: Appl. Phys. 30, 2837-2840 (1997).
    [CrossRef]
  24. Z. Song, K. Dong, X. H. Hu, J. Q. Lu, "Monte Carlo simulation of converging laser beams propagating in biological materials," Appl. Opt. 38, 2944-2949 (1999).
    [CrossRef]
  25. Y. Du, "Optical Properties of Porcine Dermis in the Near Infrared Region between 900nm and 1500nm," Greenville, NC: East Carolina University, 2000, pp. 123.
  26. V. R. Weidner, and J. J. Hsia, "Reflection properties of pressed polytetrafluoroethylene powder," J. Opt. Soc. Am. 71, 856-861 (1981).
    [CrossRef]
  27. H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, "Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600nm," Phys. Med. Biol. 51 (2006).
    [CrossRef] [PubMed]
  28. G. Hale, and M. Querry, "Optical constants of water in the 200nm to 200 micrometer wavelength region," Appl. Opt. 12, 555-563 (1973).
    [CrossRef] [PubMed]
  29. K. Li, J. Q. Lu, R. S. Brock, B. Yang, and X. H. Hu, "Quantitative modeling of skin images using Parallel Monte Carlo Methods," in Advanced Biomedical and Clinical Diagnostic Systems III, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, and G. E. Cohn, eds., Proc. SPIE 5693,82-87 (2005).
    [CrossRef]
  30. X. Ma, J. Q. Lu, X. H. Hu, "Effect of surface roughness on determination of bulk tissue optical parameters," Opt. Lett. 28, 2204-6 (2003).
    [CrossRef] [PubMed]
  31. X. Ma, J. Q. Lu, H. Ding, and X. H. Hu, "Bulk optical parameters of porcine skin dermis tissues at eight wavelengths from 325 to 1557nm," Opt. Lett. 30, 412-414 (2005).
    [CrossRef] [PubMed]

2006 (1)

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, "Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600nm," Phys. Med. Biol. 51 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (1)

C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, "Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media," Appl Opt 43, 4677-84 (2004).
[CrossRef] [PubMed]

2003 (2)

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, "Determination of complex refractive index of Polystyrene Microspheres from 370 to 1610nm," Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

X. Ma, J. Q. Lu, X. H. Hu, "Effect of surface roughness on determination of bulk tissue optical parameters," Opt. Lett. 28, 2204-6 (2003).
[CrossRef] [PubMed]

2001 (1)

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, "Optical properties of porcine skin dermis between 900 nm and 1500 nm," Phys. Med. Biol. 46, 167-81 (2001).
[CrossRef] [PubMed]

1999 (1)

1997 (2)

1996 (1)

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Comput Methods Programs Biomed 47, 131-46 (1995).
[CrossRef] [PubMed]

1993 (2)

1992 (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-9 (1992).
[CrossRef] [PubMed]

1991 (2)

1990 (1)

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, "Optical properties of normal and diseased human breast tissues in the visible and near infrared," Phys. Med. Biol. 35, 1317-34 (1990).
[CrossRef] [PubMed]

1989 (1)

1987 (1)

S. L. Jacques, C. A. Alter, and S. A. Prahl, "Angular dependence of HeNe laser light scattering by human dermis," Lasers Life Sci. 1, 309-333 (1987).

1981 (1)

1973 (1)

1951 (1)

M. C. Wang,E. Guth, "On the theory of multiple scattering, particularly of charged particles," Phys. Rev. 84, 1093-1111 (1951).
[CrossRef]

1941 (1)

L. G. Henyey, and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys J 93, 70-83 (1941).
[CrossRef]

Alter, C. A.

S. L. Jacques, C. A. Alter, and S. A. Prahl, "Angular dependence of HeNe laser light scattering by human dermis," Lasers Life Sci. 1, 309-333 (1987).

Beek, J. F.

Bevilacqua, F.

C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, "Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media," Appl Opt 43, 4677-84 (2004).
[CrossRef] [PubMed]

Bigio, I. J.

Brock, R. S.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, "Determination of complex refractive index of Polystyrene Microspheres from 370 to 1610nm," Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Cariveau, M.

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, "Optical properties of porcine skin dermis between 900 nm and 1500 nm," Phys. Med. Biol. 46, 167-81 (2001).
[CrossRef] [PubMed]

Ding, H.

Dong, K.

Du, Y.

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, "Optical properties of porcine skin dermis between 900 nm and 1500 nm," Phys. Med. Biol. 46, 167-81 (2001).
[CrossRef] [PubMed]

Flock, S. T.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-9 (1992).
[CrossRef] [PubMed]

Frank, G. L.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, "Optical properties of normal and diseased human breast tissues in the visible and near infrared," Phys. Med. Biol. 35, 1317-34 (1990).
[CrossRef] [PubMed]

Goldbach, T.

Greenstein, J. L.

L. G. Henyey, and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys J 93, 70-83 (1941).
[CrossRef]

Guth, E.

M. C. Wang,E. Guth, "On the theory of multiple scattering, particularly of charged particles," Phys. Rev. 84, 1093-1111 (1951).
[CrossRef]

Hale, G.

Hayakawa, C. K.

C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, "Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media," Appl Opt 43, 4677-84 (2004).
[CrossRef] [PubMed]

Henyey, L. G.

L. G. Henyey, and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys J 93, 70-83 (1941).
[CrossRef]

Hielscher, A. H.

Hill, B. Y.

C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, "Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media," Appl Opt 43, 4677-84 (2004).
[CrossRef] [PubMed]

Hsia, J. J.

Hu, X. H.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, "Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600nm," Phys. Med. Biol. 51 (2006).
[CrossRef] [PubMed]

X. Ma, J. Q. Lu, H. Ding, and X. H. Hu, "Bulk optical parameters of porcine skin dermis tissues at eight wavelengths from 325 to 1557nm," Opt. Lett. 30, 412-414 (2005).
[CrossRef] [PubMed]

H. Ding, J. Q. Lu, K. M. Jacobs, and X. H. Hu, "Determination of refractive indices of porcine skin tissues and intralipid at eight wavelengths between 325 and 1557nm," J. Opt. Soc. Am. A 22, 1151-1157 (2005).
[CrossRef]

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, "Determination of complex refractive index of Polystyrene Microspheres from 370 to 1610nm," Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

X. Ma, J. Q. Lu, X. H. Hu, "Effect of surface roughness on determination of bulk tissue optical parameters," Opt. Lett. 28, 2204-6 (2003).
[CrossRef] [PubMed]

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, "Optical properties of porcine skin dermis between 900 nm and 1500 nm," Phys. Med. Biol. 46, 167-81 (2001).
[CrossRef] [PubMed]

Z. Song, K. Dong, X. H. Hu, J. Q. Lu, "Monte Carlo simulation of converging laser beams propagating in biological materials," Appl. Opt. 38, 2944-2949 (1999).
[CrossRef]

Jacobs, K. M.

H. Ding, J. Q. Lu, K. M. Jacobs, and X. H. Hu, "Determination of refractive indices of porcine skin tissues and intralipid at eight wavelengths between 325 and 1557nm," J. Opt. Soc. Am. A 22, 1151-1157 (2005).
[CrossRef]

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, "Determination of complex refractive index of Polystyrene Microspheres from 370 to 1610nm," Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Comput Methods Programs Biomed 47, 131-46 (1995).
[CrossRef] [PubMed]

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-9 (1992).
[CrossRef] [PubMed]

S. L. Jacques, C. A. Alter, and S. A. Prahl, "Angular dependence of HeNe laser light scattering by human dermis," Lasers Life Sci. 1, 309-333 (1987).

Kalmus, G. W.

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, "Optical properties of porcine skin dermis between 900 nm and 1500 nm," Phys. Med. Biol. 46, 167-81 (2001).
[CrossRef] [PubMed]

Kokhanovsky, A. A.

A. A. Kokhanovsky, "Small-angle approximations of the radiative transfer theory," J. Phys. D: Appl. Phys. 30, 2837-2840 (1997).
[CrossRef]

Kragel, P. J.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, "Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600nm," Phys. Med. Biol. 51 (2006).
[CrossRef] [PubMed]

Lu, J. Q.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, "Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600nm," Phys. Med. Biol. 51 (2006).
[CrossRef] [PubMed]

X. Ma, J. Q. Lu, H. Ding, and X. H. Hu, "Bulk optical parameters of porcine skin dermis tissues at eight wavelengths from 325 to 1557nm," Opt. Lett. 30, 412-414 (2005).
[CrossRef] [PubMed]

H. Ding, J. Q. Lu, K. M. Jacobs, and X. H. Hu, "Determination of refractive indices of porcine skin tissues and intralipid at eight wavelengths between 325 and 1557nm," J. Opt. Soc. Am. A 22, 1151-1157 (2005).
[CrossRef]

X. Ma, J. Q. Lu, X. H. Hu, "Effect of surface roughness on determination of bulk tissue optical parameters," Opt. Lett. 28, 2204-6 (2003).
[CrossRef] [PubMed]

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, "Determination of complex refractive index of Polystyrene Microspheres from 370 to 1610nm," Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, "Optical properties of porcine skin dermis between 900 nm and 1500 nm," Phys. Med. Biol. 46, 167-81 (2001).
[CrossRef] [PubMed]

Z. Song, K. Dong, X. H. Hu, J. Q. Lu, "Monte Carlo simulation of converging laser beams propagating in biological materials," Appl. Opt. 38, 2944-2949 (1999).
[CrossRef]

Ma, X.

X. Ma, J. Q. Lu, H. Ding, and X. H. Hu, "Bulk optical parameters of porcine skin dermis tissues at eight wavelengths from 325 to 1557nm," Opt. Lett. 30, 412-414 (2005).
[CrossRef] [PubMed]

X. Ma, J. Q. Lu, X. H. Hu, "Effect of surface roughness on determination of bulk tissue optical parameters," Opt. Lett. 28, 2204-6 (2003).
[CrossRef] [PubMed]

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, "Determination of complex refractive index of Polystyrene Microspheres from 370 to 1610nm," Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, "Optical properties of porcine skin dermis between 900 nm and 1500 nm," Phys. Med. Biol. 46, 167-81 (2001).
[CrossRef] [PubMed]

Marijnissen, J. P. A.

Moes, C. J. M.

Mourant, J. R.

Patterson, M. S.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, "Optical properties of normal and diseased human breast tissues in the visible and near infrared," Phys. Med. Biol. 35, 1317-34 (1990).
[CrossRef] [PubMed]

Peters, V. G.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, "Optical properties of normal and diseased human breast tissues in the visible and near infrared," Phys. Med. Biol. 35, 1317-34 (1990).
[CrossRef] [PubMed]

Pickering, J. W.

Prahl, S. A.

Querry, M.

Roos, A.

Schwarzmaier, H.-J.

Song, Z.

Spanier, J.

C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, "Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media," Appl Opt 43, 4677-84 (2004).
[CrossRef] [PubMed]

Star, W. M.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-9 (1992).
[CrossRef] [PubMed]

C. J. M. Moes, M. J. C. van Gemert, W. M. Star, J. P. A. Marijnissen, and S. A. Prahl, "Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm," Appl. Opt. 28, 2292-2296 (1989).
[CrossRef] [PubMed]

Sterenborg, H. J. C. M.

van Gemert, M. J.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-9 (1992).
[CrossRef] [PubMed]

van Gemert, M. J. C.

van Marle, J.

van Staveren, H. G.

Vangemert, M. J. C.

Vanwieringen, N.

Venugopalan, V.

C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, "Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media," Appl Opt 43, 4677-84 (2004).
[CrossRef] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Comput Methods Programs Biomed 47, 131-46 (1995).
[CrossRef] [PubMed]

Wang, M. C.

M. C. Wang,E. Guth, "On the theory of multiple scattering, particularly of charged particles," Phys. Rev. 84, 1093-1111 (1951).
[CrossRef]

Weidner, V. R.

Welch, A. J.

Wilson, B. C.

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-9 (1992).
[CrossRef] [PubMed]

Wooden, W. A.

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, "Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600nm," Phys. Med. Biol. 51 (2006).
[CrossRef] [PubMed]

Wyman, D. R.

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, "Optical properties of normal and diseased human breast tissues in the visible and near infrared," Phys. Med. Biol. 35, 1317-34 (1990).
[CrossRef] [PubMed]

Yang, P.

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, "Determination of complex refractive index of Polystyrene Microspheres from 370 to 1610nm," Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

Yaroslavsky, A. N.

Yaroslavsky, I. V.

You, J. S.

C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, "Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media," Appl Opt 43, 4677-84 (2004).
[CrossRef] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Comput Methods Programs Biomed 47, 131-46 (1995).
[CrossRef] [PubMed]

Appl Opt (1)

C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, "Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media," Appl Opt 43, 4677-84 (2004).
[CrossRef] [PubMed]

Appl. Opt. (9)

G. Hale, and M. Querry, "Optical constants of water in the 200nm to 200 micrometer wavelength region," Appl. Opt. 12, 555-563 (1973).
[CrossRef] [PubMed]

C. J. M. Moes, M. J. C. van Gemert, W. M. Star, J. P. A. Marijnissen, and S. A. Prahl, "Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm," Appl. Opt. 28, 2292-2296 (1989).
[CrossRef] [PubMed]

A. Roos, "Interpretation of integrating sphere signal output for nonideal transmitting samples," Appl. Opt. 30, 468-474 (1991).
[CrossRef] [PubMed]

H. G. van Staveren, C. J. M. Moes, J. van Marle, S. A. Prahl, and M. J. C. van Gemert, "Light scattering in Intralipid-10% in the wavelength range of 400-1100 nanometers," Appl. Opt. 30, 4507-4514 (1991).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. Vanwieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. Vangemert, "Double-integrating-sphere system for measuring the optical-properties of tissue," Appl. Opt. 32, 399-410 (1993).
[CrossRef] [PubMed]

S. A. Prahl, M. J. C. van Gemert,and A. J. Welch, "Determining the optical properties of turbid media by using the adding-doubling method," Appl. Opt. 32, 559-568 (1993).
[CrossRef] [PubMed]

A. H. Hielscher, J. R. Mourant,and I. J. Bigio, "Influence of particle size and concentration on the diffuse backscattering of polarized light from tissue phantoms and biological cell suspensions," Appl. Opt. 36, 125-136 (1997).
[CrossRef] [PubMed]

Z. Song, K. Dong, X. H. Hu, J. Q. Lu, "Monte Carlo simulation of converging laser beams propagating in biological materials," Appl. Opt. 38, 2944-2949 (1999).
[CrossRef]

I. V. Yaroslavsky, A. N. Yaroslavsky, T. Goldbach, and H.-J. Schwarzmaier, "Inverse hybrid technique for determining the optical properties of turbid media from integrating-sphere measurements," Appl. Opt. 35, 6797-6809 (1996).
[CrossRef] [PubMed]

Astrophys J (1)

L. G. Henyey, and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys J 93, 70-83 (1941).
[CrossRef]

Comput Methods Programs Biomed (1)

L. Wang, S. L. Jacques, and L. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Comput Methods Programs Biomed 47, 131-46 (1995).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. D: Appl. Phys. (1)

A. A. Kokhanovsky, "Small-angle approximations of the radiative transfer theory," J. Phys. D: Appl. Phys. 30, 2837-2840 (1997).
[CrossRef]

Lasers Life Sci. (1)

S. L. Jacques, C. A. Alter, and S. A. Prahl, "Angular dependence of HeNe laser light scattering by human dermis," Lasers Life Sci. 1, 309-333 (1987).

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-9 (1992).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Med. Biol. (4)

V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, "Optical properties of normal and diseased human breast tissues in the visible and near infrared," Phys. Med. Biol. 35, 1317-34 (1990).
[CrossRef] [PubMed]

Y. Du, X. H. Hu, M. Cariveau, X. Ma, G. W. Kalmus, and J. Q. Lu, "Optical properties of porcine skin dermis between 900 nm and 1500 nm," Phys. Med. Biol. 46, 167-81 (2001).
[CrossRef] [PubMed]

X. Ma, J. Q. Lu, R. S. Brock, K. M. Jacobs, P. Yang, and X. H. Hu, "Determination of complex refractive index of Polystyrene Microspheres from 370 to 1610nm," Phys. Med. Biol. 48, 4165-4172 (2003).
[CrossRef]

H. Ding, J. Q. Lu, W. A. Wooden, P. J. Kragel, and X. H. Hu, "Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600nm," Phys. Med. Biol. 51 (2006).
[CrossRef] [PubMed]

Phys. Rev. (1)

M. C. Wang,E. Guth, "On the theory of multiple scattering, particularly of charged particles," Phys. Rev. 84, 1093-1111 (1951).
[CrossRef]

Other (7)

K. Li, J. Q. Lu, R. S. Brock, B. Yang, and X. H. Hu, "Quantitative modeling of skin images using Parallel Monte Carlo Methods," in Advanced Biomedical and Clinical Diagnostic Systems III, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, and G. E. Cohn, eds., Proc. SPIE 5693,82-87 (2005).
[CrossRef]

Y. Du, "Optical Properties of Porcine Dermis in the Near Infrared Region between 900nm and 1500nm," Greenville, NC: East Carolina University, 2000, pp. 123.

H. C. van de Hulst, Multiple light scattering: tables, formulas, and applications, Vol. 1 & 2. (Academic Press, New York, 1980).

M. Born, E. Wolf, and A. B. Bhatia, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, 7th ed. (Cambridge University Press, Cambridge, England, 1999).

S. T. Flock, "The Optical Properties of Tissues and Light Dosimetry," (Hamilton, Ontario, Canada, McMaster University, 1988).

S. L. Jacques, "Optical properties of "Intralipid", an aqueous suspension of lipid droplet," (Oregon Medical Laser Center, 1998), http://omlc.ogi.edu/spectra/intralipid/index.html.

C. Chen, J. Q. Lu, and X. H. Hu, "OPDISM - Optical Parameters Determined by Integrating Sphere Measurement," (Biomedical Laser Laboratory, 2006), http://bmlaser.physics.ecu.edu.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Definitions of calculated signals. The dotted lines representing the “virtual” sphere in the signal MC code. (b) Three orientations of a three-port integrating sphere for acquisition of the detected signals of PR, PT and PC. SA: the three-layer sample assembly, B: baffle, PD: photodiode, PA preamplifier.

Fig. 2
Fig. 2

(a) A schematic of the reflectometer system; PM: prism, PD: photodiode, S: sample. (b) The spatial filtering setup for measurement of the forward transmitted light signal If; L: lamp, M: monochromater, C: chopper, M1/M2: concave mirrors, LF: longpass filter, SA: sample assembly, SL: slit, PA: preamplifier, LIA: lock-in amplifier, PC: computer.

Fig. 3
Fig. 3

The real refractive index of 10% and 20% intralipid versus wavelength and the fitted Cornu dispersion relations (lines). The symbols and error bars represent the mean and standard deviation of the index determined from 6 measurements at each wavelength with 3 for s-and 3 for p-polarized incident beam [3]. Inset: a measured coherent reflectance curve (black symbols) of 20% intralipid with a p-polarized incident beam at λ=633nm and fitted by the Fresnel formulae (red line).

Fig. 4
Fig. 4

The calculated Tf by RTE and the signal MC code versus the optical thickness τ with μt=31(mm-1): (a) different g with a=96.8%; (b) different a with g=0.90. The solid red line represents the Beer-Lambert law and symbols (Δ) are the MC calculated collimated transmittance with unscattered photons.

Fig. 5
Fig. 5

The measured and calculated diffuse reflectance Rd of two reflectance standards versus wavelength. The solid lines are interpolated results from the vendor supplied data.

Fig. 6
Fig. 6

The comparison of Rd and Td calculated with the signal and sphere MC code for samples between two glass holder plates with different edge reflectivity R. The optical parameters for the samples were set as μs=5mm-1, μa=0.1mm-1, nr=1.30 and (a) g=0.0; (b) g=0.9. The symbols represent the signal MC code results while the lines represent the sphere MC results: R=100%: ▫ and dashed lines; R=50%: ▽ and dotted lines; R=0%: O and solid lines.

Fig. 7
Fig. 7

The measured forward transmitted light signal If versus the thickness D of 20% intralipid samples: (a) λ=550nm; (b) λ=1450nm. The solid red lines are the fitted results based on the Beer-Lambert law for estimating μt and the dashed blue lines are calculated results from the sphere MC code with the inversely determined optical parameters.

Fig. 8
Fig. 8

The wavelength dependence of the optical parameters of 20% intralipid samples. The symbols and error bars are the means and standard deviations obtained from three measurements with samples of thee different thicknesses. The dashed lines are visual guides and the blue solid line is a power law fitting of μs=Cλ-2.407, where C is a constant.

Fig. 9
Fig. 9

The wavelength dependence of the optical parameters of 10% intralipid samples. The symbols and error bars are the means and standard deviations obtained from three samples. The lines are curves fitted from the μs (dash-dot) and g (dash-dot-dot) data in [16].

Fig. 10
Fig. 10

The contour graphs of the total squared error δ as a function of albedo a and anisotropy factor g obtained from the measured signals at two values of wavelength λ. The measured data were acquired from a 20% intralipid sample with thickness D=0.159mm.

Fig. 11
Fig. 11

The bar graphs of the relative changes in the optical parameters when the refractive index nr or diffuse reflectance Rd or diffuse transmittance Td is changed from the input values of nr=1.3619, Rd=47.4%, Td=30.4% at λ=550nm and nr=1.3516, Rd=8.82%, Td=16.3% at λ=1450nm to the signal MC code. The measured data were from the same sample used in Fig. 10 calculations. Some error bars of μs are too small to be seen.

Tables (1)

Tables Icon

Table 1 The optical parameters of intralipid solutions at λ=633nm

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

s ∙▽ L r s = μ t L r s + μ s 0 π 0 2 π p s s ' L r s ' sin θ ' d θ ' d φ ' ,
χ L z χ z = μ t L z χ + μ s 1 1 p ( χ , χ ' ) L ( z , χ ' ) d χ ' .
p ( cos α ) = l = 0 w l P l ( cos α )
= l = 0 w l { P l ( cos θ ) P l ( cos θ ' ) + 2 m = 1 l ( l m ) ! ( l + m ) ! P l m ( cos θ ) P l m ( cos θ ' ) cos [ m ( φ φ ' ) ] } ,
p ( χ , χ ' ) = 0 2 π p ( cos α ) d φ ' = 2 π l = 0 w l P l ( χ ) P l ( χ ' ) ,
p ( cos α ) = 1 4 π 1 g 2 ( 1 + g 2 2 g cos α ) 3 / 2 ,
4 π w l = ( 2 l + 1 ) g l .
L ( 0 , χ ) = I 0 2 π δ ( χ 1 ) , L ( D , χ ) 0 ,
L ( z , χ ) = I 0 e μ t z 4 π l = 0 ( 2 l + 1 ) P l ( χ ) e 4 π w l 2 l + 1 μ s z .
L z χ = L 0 χ e μ t z + I 0 e μ t z 4 π j = 1 ( μ s z ) j j ! l = 0 ( 2 l + 1 ) g jl P l ( χ ) .
T f ( τ ) = 2 π χ 0 1 L D χ d χ 2 π 0 1 L D χ d χ = e τ { 1 + 1 2 j = 1 J ( ) j ! l = 0 L ( 2 l + 1 ) g jl χ 0 1 P l ( χ ) d χ } ,
n r = A + B ( λ C ) ,
I f ( D ) SI 0 e μ t D
R d = AP R cos 20 ° A ( 1 f ) P C + A S P R cos 20 ° ,
T d = R d P T P R ,
δ = ( ( R d ) cal R d R d ) 2 + ( ( T d ) cal T d T d ) 2 .

Metrics