Abstract

The objective of the present investigation is to propose and theoretically demonstrate the effective suppression of higher-order modes in large-hollow-core photonic band gap fibers (PBGFs), mainly for low-loss data transmission platforms and/or high power delivery systems. The proposed design strategy is based on the index-matching mechanism of central air-core modes with defected outer core modes. By incorporating several air-cores in the cladding of the PBGF with 6-fold symmetry it is possible to resonantly couple the light corresponding to higher-order modes into the outer core, thus significantly increasing the leakage losses of the higher-order modes in comparison to the fundamental mode, thus making our proposed design to operate in an effectively single mode fashion with polarization independent propagation characteristics. The validation of the procedure is ensured with a detailed PBGF analysis based on an accurate finite element modal solver. Extensive numerical results show that the leakage losses of the higher-order modes can be enhanced in a level of at least 2 orders of magnitude in comparison to those of the fundamental mode. Our investigation is expected to remove an essential obstacle in the development of large-core single-mode hollow-core fibers, thus enabling them to surpass the attenuation of conventional fibers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef] [PubMed]
  2. S. Kawanishi, T. Yamamoto, H. Kubota, M. Tanaka, and S. Yamaguchi, "Dispersion controlled and polarization maintaining photonic crystal fibers for high performance network systems,"IEICE Trans. Electron. E87-C, 336-342 (2004).
  3. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
    [CrossRef] [PubMed]
  4. P. Roberts, D. Williams, B. Mangan, H. Sabert, F. Couny, W. Wadsworth, T. Birks, J. Knight, and P. Russell, "Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround," Opt. Express 13, 8277-8285 (2005).
    [CrossRef] [PubMed]
  5. G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, and B. Mangan, "Hollow core photonic crystal fibers for beam delivery," Opt. Express 12, 1477-1484 (2004).
    [CrossRef] [PubMed]
  6. J. Shephard, J. Jones, D. Hand, G. Bouwmans, J. Knight, P. Russell, and B. Mangan, "High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers," Opt. Express 12, 717-723 (2004).
    [CrossRef] [PubMed]
  7. T. Murao, K. Saitoh, and M. Koshiba, "Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single mode operation," Opt. Express 14, 2404-2412 (2006).
    [CrossRef] [PubMed]
  8. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005.
    [CrossRef] [PubMed]
  9. J. M. Fini. "Design of solid and microstructure fibers for suppression of higher order modes," Opt. Express 13, 3477-3490 (2005).
    [CrossRef] [PubMed]
  10. L. Lavoute, P. Roy, A. Desfarges-Berthelemot, V. Kermène, and S. Février, "Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration," Opt. Express 14, 2994-2999 (2006.
    [CrossRef] [PubMed]
  11. F. Gerome, J. L. Auguste, and J. M. Blondy. "Design of dispersion-compensating fibers based on a dual concentric-core photonic crystal fiber," Opt. Lett. 29, 2725-2727 (2004).
    [CrossRef] [PubMed]
  12. K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003).
    [CrossRef] [PubMed]
  13. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
    [CrossRef]
  14. H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40, 551-556 (2004).
    [CrossRef]
  15. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allen, and K. W. Koch, "Low-loss hollow-core silica/air photonic band-gap fibre," Nature 424, 657-659 (2003).
    [CrossRef] [PubMed]
  16. K. Saitoh and M. Koshiba, "Photonic bandgap fibers with high birefringence," IEEE Photon. Technol. Lett. 14, 1291-1293 (2002).
    [CrossRef]

2006 (2)

2005 (3)

2004 (4)

2003 (3)

K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allen, and K. W. Koch, "Low-loss hollow-core silica/air photonic band-gap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

2002 (2)

K. Saitoh and M. Koshiba, "Photonic bandgap fibers with high birefringence," IEEE Photon. Technol. Lett. 14, 1291-1293 (2002).
[CrossRef]

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Allen, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allen, and K. W. Koch, "Low-loss hollow-core silica/air photonic band-gap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Auguste, J. L.

Birks, T.

Birks, T. A.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Blondy, J. M.

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allen, and K. W. Koch, "Low-loss hollow-core silica/air photonic band-gap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Bouwmans, G.

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Desfarges-Berthelemot, A.

Digonnet, M. J. F.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40, 551-556 (2004).
[CrossRef]

Fan, S.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40, 551-556 (2004).
[CrossRef]

Farr, L.

Février, S.

Fini, J. M.

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allen, and K. W. Koch, "Low-loss hollow-core silica/air photonic band-gap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Gerome, F.

Hand, D.

Humbert, G.

Jones, J.

Kermène, V.

Kim, H. K.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40, 551-556 (2004).
[CrossRef]

Kino, G. S.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40, 551-556 (2004).
[CrossRef]

Knight, J.

Knight, J. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allen, and K. W. Koch, "Low-loss hollow-core silica/air photonic band-gap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Koshiba, M.

T. Murao, K. Saitoh, and M. Koshiba, "Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single mode operation," Opt. Express 14, 2404-2412 (2006).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Photonic bandgap fibers with high birefringence," IEEE Photon. Technol. Lett. 14, 1291-1293 (2002).
[CrossRef]

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

Lavoute, L.

Mangan, B.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Mason, M.

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allen, and K. W. Koch, "Low-loss hollow-core silica/air photonic band-gap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Murao, T.

Roberts, P.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Roy, P.

Russell, P.

Russell, P. St. J.

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005.
[CrossRef] [PubMed]

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

Sabert, H.

Saitoh, K.

T. Murao, K. Saitoh, and M. Koshiba, "Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single mode operation," Opt. Express 14, 2404-2412 (2006).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Photonic bandgap fibers with high birefringence," IEEE Photon. Technol. Lett. 14, 1291-1293 (2002).
[CrossRef]

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

Shephard, J.

Shin, J.

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40, 551-556 (2004).
[CrossRef]

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allen, and K. W. Koch, "Low-loss hollow-core silica/air photonic band-gap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Tomlinson, A.

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allen, and K. W. Koch, "Low-loss hollow-core silica/air photonic band-gap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Wadsworth, W.

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allen, and K. W. Koch, "Low-loss hollow-core silica/air photonic band-gap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Williams, D.

IEEE J. Quantum Electron. (2)

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

H. K. Kim, J. Shin, S. Fan, M. J. F. Digonnet, and G. S. Kino, "Designing air-core photonic bandgap fibers free of surface modes," IEEE J. Quantum Electron. 40, 551-556 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Saitoh and M. Koshiba, "Photonic bandgap fibers with high birefringence," IEEE Photon. Technol. Lett. 14, 1291-1293 (2002).
[CrossRef]

Nature (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allen, and K. W. Koch, "Low-loss hollow-core silica/air photonic band-gap fibre," Nature 424, 657-659 (2003).
[CrossRef] [PubMed]

Opt. Express (8)

K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003).
[CrossRef] [PubMed]

P. Roberts, D. Williams, B. Mangan, H. Sabert, F. Couny, W. Wadsworth, T. Birks, J. Knight, and P. Russell, "Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround," Opt. Express 13, 8277-8285 (2005).
[CrossRef] [PubMed]

G. Humbert, J. Knight, G. Bouwmans, P. Russell, D. Williams, P. Roberts, and B. Mangan, "Hollow core photonic crystal fibers for beam delivery," Opt. Express 12, 1477-1484 (2004).
[CrossRef] [PubMed]

J. Shephard, J. Jones, D. Hand, G. Bouwmans, J. Knight, P. Russell, and B. Mangan, "High energy nanosecond laser pulses delivered single-mode through hollow-core PBG fibers," Opt. Express 12, 717-723 (2004).
[CrossRef] [PubMed]

T. Murao, K. Saitoh, and M. Koshiba, "Design of air-guiding modified honeycomb photonic band-gap fibers for effectively single mode operation," Opt. Express 14, 2404-2412 (2006).
[CrossRef] [PubMed]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St. J. Russell, "Ultimate low loss of hollow-core photonic crystal fibres," Opt. Express 13, 236-244 (2005.
[CrossRef] [PubMed]

J. M. Fini. "Design of solid and microstructure fibers for suppression of higher order modes," Opt. Express 13, 3477-3490 (2005).
[CrossRef] [PubMed]

L. Lavoute, P. Roy, A. Desfarges-Berthelemot, V. Kermène, and S. Février, "Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration," Opt. Express 14, 2994-2999 (2006.
[CrossRef] [PubMed]

Opt. Lett. (1)

Science (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999).
[CrossRef] [PubMed]

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef] [PubMed]

Other (1)

S. Kawanishi, T. Yamamoto, H. Kubota, M. Tanaka, and S. Yamaguchi, "Dispersion controlled and polarization maintaining photonic crystal fibers for high performance network systems,"IEICE Trans. Electron. E87-C, 336-342 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig.1.
Fig.1.

Schematic cross-sections of (a) a PBGF with a 7-unit-cell air-core, (b) a PBGF with a 19-unit-cell air-core, and (c) a non-standard PBGF with a 19-unit-cell central air-core and an additional 7-unit-cell outer core adjacent to the central core (upper panel). Blue and red curves (lower panel) show the field profiles of the fundamental and higher order modes for the central core and for the outer core, respectively, each corresponding to different effective indexes (left arrow). The presence of the outer core gives rise to resonant coupling between the central and outer core modes, suppressing in this way the existence of higher-order modes and permitting an effectively single-mode operation.

Fig. 2.
Fig. 2.

Electric field vector distributions of the two degenerated fundamental modes, (a) HE11x and (b) HE11y modes in a PBGF with 19-unit-cell core, and structural parameters of d/Λ = 0.98 and λ/Λ = 0.5.

Fig. 3.
Fig. 3.

Electric field vector distributions of the four higher-order modes which are (a) HE21’, (b) HE21”, (c) TE01-like, and (d) TM01-like modes in a PBGF with 19-unit-cell core, and structural parameters of d/Λ = 0.98 and λ/Λ = 0.5.

Fig. 4.
Fig. 4.

Effective index curves as a function of the normalized wavelength λ/Λ for (a) a PBGF with 7-unit-cell core and (b) a PBGF with 19-unit-cell core, where d/Λ = 0.94 and the grey strips represent the PBG boundaries.

Fig. 5.
Fig. 5.

Effective index curves as a function of the normalized wavelength λ/Λ for (a) a PBGF with 7-unit-cell core and (b) a PBGF with 19-unit-cell core, where d/Λ = 0.96 and the grey strips represent the PBG boundaries.

Fig. 6.
Fig. 6.

Effective index curves as a function of the normalized wavelength λ/Λ for (a) a PBGF with 7-unit-cell core and (b) a PBGF with 19-unit-cell core, where d/Λ = 0.98 and the grey strips represent the PBG boundaries.

Fig. 7.
Fig. 7.

Schematic cross-section of the proposed large-hollow-core PBGF profile with a 6-fold symmetric distribution of outer cores in the cladding. The index-matching mechanism can enable the resonant coupling of the higher-order modes of the central-core to the outer cores. By a judicious choice of the design parameters, this mechanism is expected to enhance the leakage losses of the higher-order modes, thus enabling effectively single-mode operation.

Fig. 8.
Fig. 8.

Leakage loss properties as a function of the normalized wavelength for PBGF with a 19-unit-cell central core (a) without defected outer cores and (b) with defected outer cores, where d/Λ = 0.94 and the number of air-hole ring is 6.

Fig. 9.
Fig. 9.

Leakage loss properties as a function of the normalized wavelength for PBGF with a 19-unit-cell central core (a) without defected outer cores and (b) with defected outer cores, where d/Λ = 0.96 and the number of air-hole ring is 6.

Fig. 10.
Fig. 10.

Leakage loss properties as a function of the normalized wavelength for PBGF with a 19-unit-cell central core (a) without defected outer cores and (b) with defected outer cores, where d/Λ = 0.98 and the number of air-hole ring is 6.

Fig. 11.
Fig. 11.

(a) Effective index curves as a function of the operational wavelength for the fundamental HE11 mode (blue curve), the higher-order TE01-like mode (cyan curve), the higher-order TM01-like mode (green curve), and the degenerated higher-order HE21mode (red curve), with the PBG boundaries denoted with the grey strips, (b) leakage loss properties of the modes for the optimized structure as a function of the operational wavelength, (c) the effective mode area as a function of the wavelength, and (d) the electric field distribution of the fundamental HE11 mode at a wavelength of λ = 1.55 μm In all cases above the effectively single-mode operational bandwidth is denoted as a cyan strip.

Fig. 12.
Fig. 12.

Visualization of the electric field distributions in dB of the higher-order TM01-like mode at a wavelength of λ = 1.7 μm, in the presence of outer cores for (a) x-component of the electric field, and (b) y-component of the electric field, and in the absence of outer cores for (c) x-component of the electric field and (d) y-component of the electric field. Notice the strong coupling of the higher-order mode to the outer cores in the first two cases.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A eff = ( E 2 dxdy ) 2 E 4 dxdy

Metrics