Abstract

Some complex microstructured fibers (MSFs) are well known to produce poor-quality cleaves or even to break at cleavage. But to find widespread use in photonics technology, MSFs will have to be easily cleavable using mechanical cleavers, since more sophisticated techniques add complexity. In this paper, the very different, yet reproducible cleavage patterns of three high air-fraction, double-clad microstructured fibers are analyzed. Fracture faces reveal the fracture propagation paths and provide measurements of the fracture lengths in the intercapillary bridges. These lengths prove to be always shorter than the critical fracture length predicted by fracture mechanics. A criterion based on critical fracture length is thus proposed to design cleavage-robust MSFs.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Huntington, K. Lyytikainen and J. Canning "Analysis and removal of fracture damage during and subsequent to holey fiber cleaving," Opt. Express 11, 535-540 (2003).
    [CrossRef] [PubMed]
  2. C. Simonneau, P. Bousselet, G. Melin, L. Provost, C. Moreau, X. Rejeaunier, A. Le Sauze, L. Gassa and D. Bayart, "High-power air-clad photonic crystal fiber cladding-pumped EDFA for WDM applications in the C-band," presented at the Europeen Conference on Optical Communications (ECOC), PD57, (2003).
  3. W. J. Wadsworth, M. R. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley and P. S. J. Russel, "Very high numerical aperture fibers," IEEE Photon. Technol. Lett. 16, 843-845 (2004).
    [CrossRef]
  4. R. O. Ritchie, "Mechanics of fatigue-crack propagation in ductile and brittle solids," Int. J. Fract. 100, 55-83 (1999).
    [CrossRef]
  5. D. G. Holloway, "The fracture of glass," inPhysics Education (1968), pp. 317-322.
    [CrossRef]
  6. T. Kuwabara, Y. Mitsunaga and H. Koga "Calculation method of failure probabilities of optical fibers," J. Lightwave Technol. 11, 1132-1138 (1993).
    [CrossRef]
  7. A. D. Yablon, Optical Fiber Fusion Splicing (Springer, Germany, 2005).
  8. T. Haibara, M. Matsumoto and M. Miyauchi, "Design and developpement of an automatic cutting tool for optical fibers," J. Lightwave Technol. LT-4, 1434-1439 (1986).
    [CrossRef]
  9. D. Glodge, P. W. Smith, D. L. Bisbee and E. L. Chinnock, "Optical fiber end preparation for low-loss splices," Bell Syst. Tech. J. 52, 1579-1587 (1973).
  10. NIST, "SiO2 Base Glasses: S100a," retrieved May 31, 2006, http://www.ceramics.nist.gov/srd/summary/glss100a.htm.
  11. S. S. Aboutorabi, "Clivage mécanique des fibres microstructurées," M. Eng. Thesis (École de Technologie supérieure, Montreal, QC, Canada, 2006).
  12. H. Tada, P. C. Paris and G. R. Irwin, The Stress Analysis of Cracks Handbook, 3rd ed. (American Society of Mechanical Engineers Press, New York, 2000).
    [CrossRef]

2004 (1)

W. J. Wadsworth, M. R. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley and P. S. J. Russel, "Very high numerical aperture fibers," IEEE Photon. Technol. Lett. 16, 843-845 (2004).
[CrossRef]

2003 (1)

1999 (1)

R. O. Ritchie, "Mechanics of fatigue-crack propagation in ductile and brittle solids," Int. J. Fract. 100, 55-83 (1999).
[CrossRef]

1993 (1)

T. Kuwabara, Y. Mitsunaga and H. Koga "Calculation method of failure probabilities of optical fibers," J. Lightwave Technol. 11, 1132-1138 (1993).
[CrossRef]

1986 (1)

T. Haibara, M. Matsumoto and M. Miyauchi, "Design and developpement of an automatic cutting tool for optical fibers," J. Lightwave Technol. LT-4, 1434-1439 (1986).
[CrossRef]

1973 (1)

D. Glodge, P. W. Smith, D. L. Bisbee and E. L. Chinnock, "Optical fiber end preparation for low-loss splices," Bell Syst. Tech. J. 52, 1579-1587 (1973).

1968 (1)

D. G. Holloway, "The fracture of glass," inPhysics Education (1968), pp. 317-322.
[CrossRef]

Birks, T. A.

W. J. Wadsworth, M. R. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley and P. S. J. Russel, "Very high numerical aperture fibers," IEEE Photon. Technol. Lett. 16, 843-845 (2004).
[CrossRef]

Bisbee, D. L.

D. Glodge, P. W. Smith, D. L. Bisbee and E. L. Chinnock, "Optical fiber end preparation for low-loss splices," Bell Syst. Tech. J. 52, 1579-1587 (1973).

Bouwmans, G.

W. J. Wadsworth, M. R. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley and P. S. J. Russel, "Very high numerical aperture fibers," IEEE Photon. Technol. Lett. 16, 843-845 (2004).
[CrossRef]

Canning, J.

Chinnock, E. L.

D. Glodge, P. W. Smith, D. L. Bisbee and E. L. Chinnock, "Optical fiber end preparation for low-loss splices," Bell Syst. Tech. J. 52, 1579-1587 (1973).

Glodge, D.

D. Glodge, P. W. Smith, D. L. Bisbee and E. L. Chinnock, "Optical fiber end preparation for low-loss splices," Bell Syst. Tech. J. 52, 1579-1587 (1973).

Haibara, T.

T. Haibara, M. Matsumoto and M. Miyauchi, "Design and developpement of an automatic cutting tool for optical fibers," J. Lightwave Technol. LT-4, 1434-1439 (1986).
[CrossRef]

Hedley, T. D.

W. J. Wadsworth, M. R. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley and P. S. J. Russel, "Very high numerical aperture fibers," IEEE Photon. Technol. Lett. 16, 843-845 (2004).
[CrossRef]

Holloway, D. G.

D. G. Holloway, "The fracture of glass," inPhysics Education (1968), pp. 317-322.
[CrossRef]

Huntington, S.

Knight, J. C.

W. J. Wadsworth, M. R. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley and P. S. J. Russel, "Very high numerical aperture fibers," IEEE Photon. Technol. Lett. 16, 843-845 (2004).
[CrossRef]

Koga, H.

T. Kuwabara, Y. Mitsunaga and H. Koga "Calculation method of failure probabilities of optical fibers," J. Lightwave Technol. 11, 1132-1138 (1993).
[CrossRef]

Kuwabara, T.

T. Kuwabara, Y. Mitsunaga and H. Koga "Calculation method of failure probabilities of optical fibers," J. Lightwave Technol. 11, 1132-1138 (1993).
[CrossRef]

Lyytikainen, K.

Matsumoto, M.

T. Haibara, M. Matsumoto and M. Miyauchi, "Design and developpement of an automatic cutting tool for optical fibers," J. Lightwave Technol. LT-4, 1434-1439 (1986).
[CrossRef]

Mitsunaga, Y.

T. Kuwabara, Y. Mitsunaga and H. Koga "Calculation method of failure probabilities of optical fibers," J. Lightwave Technol. 11, 1132-1138 (1993).
[CrossRef]

Miyauchi, M.

T. Haibara, M. Matsumoto and M. Miyauchi, "Design and developpement of an automatic cutting tool for optical fibers," J. Lightwave Technol. LT-4, 1434-1439 (1986).
[CrossRef]

Percival, M. R.

W. J. Wadsworth, M. R. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley and P. S. J. Russel, "Very high numerical aperture fibers," IEEE Photon. Technol. Lett. 16, 843-845 (2004).
[CrossRef]

Ritchie, R. O.

R. O. Ritchie, "Mechanics of fatigue-crack propagation in ductile and brittle solids," Int. J. Fract. 100, 55-83 (1999).
[CrossRef]

Russel, P. S. J.

W. J. Wadsworth, M. R. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley and P. S. J. Russel, "Very high numerical aperture fibers," IEEE Photon. Technol. Lett. 16, 843-845 (2004).
[CrossRef]

Smith, P. W.

D. Glodge, P. W. Smith, D. L. Bisbee and E. L. Chinnock, "Optical fiber end preparation for low-loss splices," Bell Syst. Tech. J. 52, 1579-1587 (1973).

Wadsworth, W. J.

W. J. Wadsworth, M. R. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley and P. S. J. Russel, "Very high numerical aperture fibers," IEEE Photon. Technol. Lett. 16, 843-845 (2004).
[CrossRef]

Bell Syst. Tech. J. (1)

D. Glodge, P. W. Smith, D. L. Bisbee and E. L. Chinnock, "Optical fiber end preparation for low-loss splices," Bell Syst. Tech. J. 52, 1579-1587 (1973).

IEEE Photon. Technol. Lett. (1)

W. J. Wadsworth, M. R. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley and P. S. J. Russel, "Very high numerical aperture fibers," IEEE Photon. Technol. Lett. 16, 843-845 (2004).
[CrossRef]

Int. J. Fract. (1)

R. O. Ritchie, "Mechanics of fatigue-crack propagation in ductile and brittle solids," Int. J. Fract. 100, 55-83 (1999).
[CrossRef]

J. Lightwave Technol. (2)

T. Kuwabara, Y. Mitsunaga and H. Koga "Calculation method of failure probabilities of optical fibers," J. Lightwave Technol. 11, 1132-1138 (1993).
[CrossRef]

T. Haibara, M. Matsumoto and M. Miyauchi, "Design and developpement of an automatic cutting tool for optical fibers," J. Lightwave Technol. LT-4, 1434-1439 (1986).
[CrossRef]

Opt. Express (1)

Physics Education (1)

D. G. Holloway, "The fracture of glass," inPhysics Education (1968), pp. 317-322.
[CrossRef]

Other (5)

A. D. Yablon, Optical Fiber Fusion Splicing (Springer, Germany, 2005).

NIST, "SiO2 Base Glasses: S100a," retrieved May 31, 2006, http://www.ceramics.nist.gov/srd/summary/glss100a.htm.

S. S. Aboutorabi, "Clivage mécanique des fibres microstructurées," M. Eng. Thesis (École de Technologie supérieure, Montreal, QC, Canada, 2006).

H. Tada, P. C. Paris and G. R. Irwin, The Stress Analysis of Cracks Handbook, 3rd ed. (American Society of Mechanical Engineers Press, New York, 2000).
[CrossRef]

C. Simonneau, P. Bousselet, G. Melin, L. Provost, C. Moreau, X. Rejeaunier, A. Le Sauze, L. Gassa and D. Bayart, "High-power air-clad photonic crystal fiber cladding-pumped EDFA for WDM applications in the C-band," presented at the Europeen Conference on Optical Communications (ECOC), PD57, (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Cleaved surfaces of the MSF samples, obtained with an EFC-11 cleaver; a) out-of-focus optical micrograph of Fiber 1 revealing the fracture propagation path, from the blade-impact point to the final fracture ridge; b), c) and d) scanning-electron micrographs of Fibers 1, 2 and 3 respectively.

Fig. 2.
Fig. 2.

Ingliss model of fracture propagation in a bar.

Fig. 3.
Fig. 3.

Measurement of fracture length in a typical broken bridge.

Fig. 4.
Fig. 4.

Maximum fracture length in bridges for Fibers 2 and 3.

Fig. 5.
Fig. 5.

Design criterion for robust capillary bridges: any BC and DE segments should be larger than the critical fracture length ac .

Tables (2)

Tables Icon

Table 1. MSF dimensions.

Tables Icon

Table 2. Cleaving conditions using the EFC-11 cleaver.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

σ app a c Y = K IC ,
σ app D mist = K fract ,
K IC Y σ app a K fract
f ( a , W ) = 1.12 0.231 ( a W ) + 10.55 ( a W ) 2 21.72 ( a W ) 3 + 30.39 ( a W ) 4 .

Metrics