Abstract

We propose a time-dependent, spatially periodic photonic structure which is able to shift the carrier frequency of an optical pulse which propagates through it. Taking advantage of the slow group velocity of light in periodic photonic structures, the wavelength conversion process can be performed with an efficiency close to 1 and without affecting the shape and the coherence of the pulse. Quantitative Finite Difference Time Domain simulations are performed for realistic systems with optical parameters of conventional silicon technology.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955 (1996).
    [CrossRef]
  2. C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μmband efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559 (1993).
    [CrossRef]
  3. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942 (1996).
    [CrossRef]
  4. M. F. Yanik, and S. Fan, "Dynamic photonic structures: Stopping, Storage, and Time Reversal of Light," Stud. Appl. Math. 115, 233-253 (2005).
    [CrossRef]
  5. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
    [CrossRef] [PubMed]
  6. M. F. Yanik and S. Fan, "Stopping and storing light coherently," Phys. Rev. A 71, 013803 (2005).
    [CrossRef]
  7. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145-7159 (2005).
    [CrossRef] [PubMed]
  8. C. Klingshirn, Semiconductor Optics (Springer-Verlag, Heidelberg, 1997).
  9. K. J. Vahala, "Optical microcavities," Nature 424, 839 (2003).
    [CrossRef] [PubMed]
  10. B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
    [CrossRef]
  11. M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803 (2006).
    [CrossRef]
  12. H. Gersene T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. vanHulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
    [CrossRef] [PubMed]
  13. A. Melloni, F. Morichetti, and M. Martinelli, "Optical slow wave structures," Opt. Photonics News 14, 44 (2003).
    [CrossRef]
  14. J. Scheuer, G. T. Paloczi, J. K. S. Poon and A. Yariv, "Coupled resonator optical waveguides: Toward the slowing & storage of light," Opt. Photonics News 16, 36 (2005).
    [CrossRef]
  15. H. Altug and J. Vučković, "Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays," Appl. Phys. Lett. 86, 111102 (2005).
    [CrossRef]
  16. A. Melloni, F. Morichetti and M. Martinelli, "Linear and nonlinear propagation in coupled resonator slow-wave optical structures," Opt. and Quantum Electron. 35365-379 (2003).
    [CrossRef]
  17. M. Ghulinyan C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, "Free-standing porous silicon single and multiple optical cavities," J. Appl. Phys. 93, 9724 (2003).
    [CrossRef]
  18. A. Galindo and P. Pascual, Quantum Mechanics II, (Springer, Berlin, 1991).
  19. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, "Carrier-induced change in refractive index of InP, GaAs, and InGaAsP," IEEE J. Quantum Electron. 26, 113-122 (1990).
    [CrossRef]
  20. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
    [CrossRef] [PubMed]
  21. V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867 (2004).
    [CrossRef]
  22. Y.-H. Ye, J Ding, D. Y. Jeong, I. C. Khoo, Q. M. Zhang, "Finite-size effect on one-dimensional coupled-resonator optical waveguides," Phys. Rev. E 69, 056604 (2004).
    [CrossRef]
  23. M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. Andreani, "Wide-band transmission of non-distorted slow waves in 1D optical superlattices," Appl. Phys. Lett. 88, 241103 (2006).
    [CrossRef]
  24. C. R. Pollock, Fundamentals of Optoelectronics, (Irwin, Chicago, 1995).
  25. A. S. Sudbo, "Numerically stable formulation of the transverse resonance method for vector mode-field calculations in dielectric waveguides," IEEE Photon. Technol. Lett. 5, 342-344 (1993).
    [CrossRef]
  26. P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, "Experimental results on adiabatic coupling into SOI photonic Crystal coupled-cavity waveguides," Photon. Technol. Lett. 17, 1199-1201 (2005).
    [CrossRef]
  27. R. C. Alferness, "Optical guided-wave devices," Science 234, 825-829 (1986).
    [CrossRef] [PubMed]

2006 (2)

M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803 (2006).
[CrossRef]

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. Andreani, "Wide-band transmission of non-distorted slow waves in 1D optical superlattices," Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

2005 (8)

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, "Experimental results on adiabatic coupling into SOI photonic Crystal coupled-cavity waveguides," Photon. Technol. Lett. 17, 1199-1201 (2005).
[CrossRef]

H. Gersene T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. vanHulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

J. Scheuer, G. T. Paloczi, J. K. S. Poon and A. Yariv, "Coupled resonator optical waveguides: Toward the slowing & storage of light," Opt. Photonics News 16, 36 (2005).
[CrossRef]

H. Altug and J. Vučković, "Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays," Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

M. F. Yanik, and S. Fan, "Dynamic photonic structures: Stopping, Storage, and Time Reversal of Light," Stud. Appl. Math. 115, 233-253 (2005).
[CrossRef]

M. F. Yanik and S. Fan, "Stopping and storing light coherently," Phys. Rev. A 71, 013803 (2005).
[CrossRef]

M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, "Slow-light, band-edge waveguides for tunable time delays," Opt. Express 13, 7145-7159 (2005).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[CrossRef]

2004 (4)

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, "All-optical switching on a silicon chip," Opt. Lett. 29, 2867 (2004).
[CrossRef]

Y.-H. Ye, J Ding, D. Y. Jeong, I. C. Khoo, Q. M. Zhang, "Finite-size effect on one-dimensional coupled-resonator optical waveguides," Phys. Rev. E 69, 056604 (2004).
[CrossRef]

2003 (4)

A. Melloni, F. Morichetti, and M. Martinelli, "Optical slow wave structures," Opt. Photonics News 14, 44 (2003).
[CrossRef]

A. Melloni, F. Morichetti and M. Martinelli, "Linear and nonlinear propagation in coupled resonator slow-wave optical structures," Opt. and Quantum Electron. 35365-379 (2003).
[CrossRef]

M. Ghulinyan C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, "Free-standing porous silicon single and multiple optical cavities," J. Appl. Phys. 93, 9724 (2003).
[CrossRef]

K. J. Vahala, "Optical microcavities," Nature 424, 839 (2003).
[CrossRef] [PubMed]

1996 (2)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955 (1996).
[CrossRef]

1993 (2)

C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μmband efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559 (1993).
[CrossRef]

A. S. Sudbo, "Numerically stable formulation of the transverse resonance method for vector mode-field calculations in dielectric waveguides," IEEE Photon. Technol. Lett. 5, 342-344 (1993).
[CrossRef]

1990 (1)

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, "Carrier-induced change in refractive index of InP, GaAs, and InGaAsP," IEEE J. Quantum Electron. 26, 113-122 (1990).
[CrossRef]

1986 (1)

R. C. Alferness, "Optical guided-wave devices," Science 234, 825-829 (1986).
[CrossRef] [PubMed]

Akahane, Y.

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[CrossRef]

Alferness, R. C.

R. C. Alferness, "Optical guided-wave devices," Science 234, 825-829 (1986).
[CrossRef] [PubMed]

Almeida, V. R.

Altug, H.

H. Altug and J. Vučković, "Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays," Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

Andreani, L.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. Andreani, "Wide-band transmission of non-distorted slow waves in 1D optical superlattices," Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

Asano, T.

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[CrossRef]

Baets, R.

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, "Experimental results on adiabatic coupling into SOI photonic Crystal coupled-cavity waveguides," Photon. Technol. Lett. 17, 1199-1201 (2005).
[CrossRef]

Barrios, C. A.

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, "Carrier-induced change in refractive index of InP, GaAs, and InGaAsP," IEEE J. Quantum Electron. 26, 113-122 (1990).
[CrossRef]

Bertolotti, J.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. Andreani, "Wide-band transmission of non-distorted slow waves in 1D optical superlattices," Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

Bogaerts, W.

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, "Experimental results on adiabatic coupling into SOI photonic Crystal coupled-cavity waveguides," Photon. Technol. Lett. 17, 1199-1201 (2005).
[CrossRef]

Cohen, O.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Danielsen, S. L.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

Del Alamo, J. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, "Carrier-induced change in refractive index of InP, GaAs, and InGaAsP," IEEE J. Quantum Electron. 26, 113-122 (1990).
[CrossRef]

Ding, J

Y.-H. Ye, J Ding, D. Y. Jeong, I. C. Khoo, Q. M. Zhang, "Finite-size effect on one-dimensional coupled-resonator optical waveguides," Phys. Rev. E 69, 056604 (2004).
[CrossRef]

Dumon, P.

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, "Experimental results on adiabatic coupling into SOI photonic Crystal coupled-cavity waveguides," Photon. Technol. Lett. 17, 1199-1201 (2005).
[CrossRef]

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

Fan, S.

M. F. Yanik, and S. Fan, "Dynamic photonic structures: Stopping, Storage, and Time Reversal of Light," Stud. Appl. Math. 115, 233-253 (2005).
[CrossRef]

M. F. Yanik and S. Fan, "Stopping and storing light coherently," Phys. Rev. A 71, 013803 (2005).
[CrossRef]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Galli, M.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. Andreani, "Wide-band transmission of non-distorted slow waves in 1D optical superlattices," Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

Gersen, H.

H. Gersene T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. vanHulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Ghulinyan, M.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. Andreani, "Wide-band transmission of non-distorted slow waves in 1D optical superlattices," Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

Gottardo, S.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. Andreani, "Wide-band transmission of non-distorted slow waves in 1D optical superlattices," Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

Jeong, D. Y.

Y.-H. Ye, J Ding, D. Y. Jeong, I. C. Khoo, Q. M. Zhang, "Finite-size effect on one-dimensional coupled-resonator optical waveguides," Phys. Rev. E 69, 056604 (2004).
[CrossRef]

Joannopoulos, J. D.

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

Johnson, S. G.

Jones, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Kawahara, M.

C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μmband efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559 (1993).
[CrossRef]

Khoo, I. C.

Y.-H. Ye, J Ding, D. Y. Jeong, I. C. Khoo, Q. M. Zhang, "Finite-size effect on one-dimensional coupled-resonator optical waveguides," Phys. Rev. E 69, 056604 (2004).
[CrossRef]

Liao, L.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Lipson, M.

Liu, A.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Marabelli, F.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. Andreani, "Wide-band transmission of non-distorted slow waves in 1D optical superlattices," Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

Marti, J.

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, "Experimental results on adiabatic coupling into SOI photonic Crystal coupled-cavity waveguides," Photon. Technol. Lett. 17, 1199-1201 (2005).
[CrossRef]

Martinelli, M.

A. Melloni, F. Morichetti and M. Martinelli, "Linear and nonlinear propagation in coupled resonator slow-wave optical structures," Opt. and Quantum Electron. 35365-379 (2003).
[CrossRef]

Melloni, A.

A. Melloni, F. Morichetti and M. Martinelli, "Linear and nonlinear propagation in coupled resonator slow-wave optical structures," Opt. and Quantum Electron. 35365-379 (2003).
[CrossRef]

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

Mitsugi, S.

M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803 (2006).
[CrossRef]

Morichetti, F.

A. Melloni, F. Morichetti and M. Martinelli, "Linear and nonlinear propagation in coupled resonator slow-wave optical structures," Opt. and Quantum Electron. 35365-379 (2003).
[CrossRef]

Nicolaescu, R.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Noda, S.

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[CrossRef]

Notomi, M.

M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803 (2006).
[CrossRef]

Okayama, H.

C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μmband efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559 (1993).
[CrossRef]

Paloczi, G. T.

J. Scheuer, G. T. Paloczi, J. K. S. Poon and A. Yariv, "Coupled resonator optical waveguides: Toward the slowing & storage of light," Opt. Photonics News 16, 36 (2005).
[CrossRef]

Panepucci, R. R.

Paniccia, M.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Pavesi, L.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. Andreani, "Wide-band transmission of non-distorted slow waves in 1D optical superlattices," Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

Poon, J. K. S.

J. Scheuer, G. T. Paloczi, J. K. S. Poon and A. Yariv, "Coupled resonator optical waveguides: Toward the slowing & storage of light," Opt. Photonics News 16, 36 (2005).
[CrossRef]

Povinelli, M. L.

Rubin, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Samara-Rubio, D.

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Sanchis, P.

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, "Experimental results on adiabatic coupling into SOI photonic Crystal coupled-cavity waveguides," Photon. Technol. Lett. 17, 1199-1201 (2005).
[CrossRef]

Scheuer, J.

J. Scheuer, G. T. Paloczi, J. K. S. Poon and A. Yariv, "Coupled resonator optical waveguides: Toward the slowing & storage of light," Opt. Photonics News 16, 36 (2005).
[CrossRef]

Song, B. S.

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[CrossRef]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, "Carrier-induced change in refractive index of InP, GaAs, and InGaAsP," IEEE J. Quantum Electron. 26, 113-122 (1990).
[CrossRef]

Stubkjaer, K. E.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

Sudbo, A. S.

A. S. Sudbo, "Numerically stable formulation of the transverse resonance method for vector mode-field calculations in dielectric waveguides," IEEE Photon. Technol. Lett. 5, 342-344 (1993).
[CrossRef]

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Toninelli, C.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. Andreani, "Wide-band transmission of non-distorted slow waves in 1D optical superlattices," Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

Vahala, K. J.

K. J. Vahala, "Optical microcavities," Nature 424, 839 (2003).
[CrossRef] [PubMed]

Van Thourhout, D.

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, "Experimental results on adiabatic coupling into SOI photonic Crystal coupled-cavity waveguides," Photon. Technol. Lett. 17, 1199-1201 (2005).
[CrossRef]

Vuckovic, J.

H. Altug and J. Vučković, "Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays," Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

Wang, Z.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Wiersma, D. S.

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. Andreani, "Wide-band transmission of non-distorted slow waves in 1D optical superlattices," Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

Xu, C. Q.

C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μmband efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559 (1993).
[CrossRef]

Yanik, M. F.

M. F. Yanik, and S. Fan, "Dynamic photonic structures: Stopping, Storage, and Time Reversal of Light," Stud. Appl. Math. 115, 233-253 (2005).
[CrossRef]

M. F. Yanik and S. Fan, "Stopping and storing light coherently," Phys. Rev. A 71, 013803 (2005).
[CrossRef]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Yariv, A.

J. Scheuer, G. T. Paloczi, J. K. S. Poon and A. Yariv, "Coupled resonator optical waveguides: Toward the slowing & storage of light," Opt. Photonics News 16, 36 (2005).
[CrossRef]

Ye, Y.-H.

Y.-H. Ye, J Ding, D. Y. Jeong, I. C. Khoo, Q. M. Zhang, "Finite-size effect on one-dimensional coupled-resonator optical waveguides," Phys. Rev. E 69, 056604 (2004).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955 (1996).
[CrossRef]

Zhang, Q. M.

Y.-H. Ye, J Ding, D. Y. Jeong, I. C. Khoo, Q. M. Zhang, "Finite-size effect on one-dimensional coupled-resonator optical waveguides," Phys. Rev. E 69, 056604 (2004).
[CrossRef]

Appl. Phys. Lett. (3)

C. Q. Xu, H. Okayama, and M. Kawahara, "1.5 μmband efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide," Appl. Phys. Lett. 63, 3559 (1993).
[CrossRef]

H. Altug and J. Vučković, "Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays," Appl. Phys. Lett. 86, 111102 (2005).
[CrossRef]

M. Ghulinyan, M. Galli, C. Toninelli, J. Bertolotti, S. Gottardo, F. Marabelli, D. S. Wiersma, L. Pavesi, and L. Andreani, "Wide-band transmission of non-distorted slow waves in 1D optical superlattices," Appl. Phys. Lett. 88, 241103 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, "Carrier-induced change in refractive index of InP, GaAs, and InGaAsP," IEEE J. Quantum Electron. 26, 113-122 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. S. Sudbo, "Numerically stable formulation of the transverse resonance method for vector mode-field calculations in dielectric waveguides," IEEE Photon. Technol. Lett. 5, 342-344 (1993).
[CrossRef]

J. Appl. Phys. (1)

M. Ghulinyan C. J. Oton, G. Bonetti, Z. Gaburro, and L. Pavesi, "Free-standing porous silicon single and multiple optical cavities," J. Appl. Phys. 93, 9724 (2003).
[CrossRef]

J. Lightwave Technol. (2)

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, "All-optical wavelength conversion by semiconductor optical amplifiers," J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

S. J. B. Yoo, "Wavelength conversion technologies for WDM network applications," J. Lightwave Technol. 14, 955 (1996).
[CrossRef]

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207 (2005).
[CrossRef]

Nature (2)

K. J. Vahala, "Optical microcavities," Nature 424, 839 (2003).
[CrossRef] [PubMed]

A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, "A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427, 615-618 (2004).
[CrossRef] [PubMed]

Opt. and Quantum Electron. (1)

A. Melloni, F. Morichetti and M. Martinelli, "Linear and nonlinear propagation in coupled resonator slow-wave optical structures," Opt. and Quantum Electron. 35365-379 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Photonics News (2)

A. Melloni, F. Morichetti, and M. Martinelli, "Optical slow wave structures," Opt. Photonics News 14, 44 (2003).
[CrossRef]

J. Scheuer, G. T. Paloczi, J. K. S. Poon and A. Yariv, "Coupled resonator optical waveguides: Toward the slowing & storage of light," Opt. Photonics News 16, 36 (2005).
[CrossRef]

Photon. Technol. Lett. (1)

P. Sanchis, J. Marti, W. Bogaerts, P. Dumon, D. Van Thourhout, and R. Baets, "Experimental results on adiabatic coupling into SOI photonic Crystal coupled-cavity waveguides," Photon. Technol. Lett. 17, 1199-1201 (2005).
[CrossRef]

Phys. Rev. A (2)

M. Notomi and S. Mitsugi, "Wavelength conversion via dynamic refractive index tuning of a cavity," Phys. Rev. A 73, 051803 (2006).
[CrossRef]

M. F. Yanik and S. Fan, "Stopping and storing light coherently," Phys. Rev. A 71, 013803 (2005).
[CrossRef]

Phys. Rev. E (1)

Y.-H. Ye, J Ding, D. Y. Jeong, I. C. Khoo, Q. M. Zhang, "Finite-size effect on one-dimensional coupled-resonator optical waveguides," Phys. Rev. E 69, 056604 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, "Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency," Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

H. Gersene T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. vanHulst, T. F. Krauss, and L. Kuipers, "Real-space observation of ultraslow light in photonic crystal waveguides," Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Science (1)

R. C. Alferness, "Optical guided-wave devices," Science 234, 825-829 (1986).
[CrossRef] [PubMed]

Stud. Appl. Math. (1)

M. F. Yanik, and S. Fan, "Dynamic photonic structures: Stopping, Storage, and Time Reversal of Light," Stud. Appl. Math. 115, 233-253 (2005).
[CrossRef]

Other (3)

C. Klingshirn, Semiconductor Optics (Springer-Verlag, Heidelberg, 1997).

A. Galindo and P. Pascual, Quantum Mechanics II, (Springer, Berlin, 1991).

C. R. Pollock, Fundamentals of Optoelectronics, (Irwin, Chicago, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Finite difference Time Domain (FDTD) simulation of the frequency shift in a sample time-dependent single Fabry-Perot microcavity. The simulated cavity, resonant at vacuum wavelength λ=1550.25 nm, consists in a λ/2 layer (thickness = 388 nm with refractive index = 2) sandwiched between two 8.5-period Distributed Bragg Reflectors, fabricated by alternating high refractive index λ/4 layers (thickness = 129 nm with refractive index = 3) and low refractive index λ/4 layers (thickness = 194 nm with refractive index = 2). A Gaussian pulse of duration 20 ps is taken as the input. The dashed (solid) line shows the amplitude of the Poynting vector at the input (output) side versus time. The inset shows the spectra of respective electric fields (the resolution of the spectrum of the output is limited by the time window of the simulation).

Fig. 2.
Fig. 2.

Simplified schematic representation of the CROW structure. For simplicity, we have represented the external dielectric mirrors with only 4 periods instead of 13, and the inter-cavity - coupling - mirrors with only 9 periods instead of 27. Only 2 cavities instead of 45 have been shown. Light travels in the positive x direction.

Fig. 3.
Fig. 3.

Left panel: band structure of the 1D model of the CROW structure shown in Fig.2. The arrows indicate the frequency separation ΔΩ between the miniband and the nearest photonic states with the same k. Central panel: enlarged view of miniband. Right panel: trasmission spectrum and spectral shape of the signal pulse. This latter is chosen to fit in the region of the spectrum where the dispersion is linear and the transmittivity is flat and almost unity. Vertical axes have all the same (dimensionless) unit. For the actual parameters see text.

Fig. 4.
Fig. 4.

FDTD simulation of the envelope of Poynting vectors at the input (dashed line, positive entering) and output boundary (solid line, positive exiting) of the coupled-cavities structure. Input and output boundaries are defined in Figure 2. The refractive index of all the layers is time-dependent, as shown by the right y-axis. Upper time scale is relative to the delay (τ0) in a homogeneous medium with the average refractive index of the 1D-structure. The inset shows the spectra of the input and output pulse electric fields.

Fig. 5.
Fig. 5.

(color online) A comparison between the calculated transmission spectra of the initial and shifted minibands in the case of a waveguide (a) and a 1D-multilayer structure (b). The miniband dispersion (full circles) in the 1D case is also plotted in (b).

Fig. 6.
Fig. 6.

(color online) Successive snapshots of the electric field of the optical wave and of the index-driving microwave at 37, 56 and 75 ps. The differently colored electric fields have an illustrative scope and refer to a blueshift of the input pulse wavelength. The structure of the pulse electric field reflects the coupled cavity structure (maxima are located in correspondence of C layers.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δω ω = δn n 0 + δn δn n 0
ω 0 ( k ) = [ ω ̄ J cos ( kℓ ) ] ,
n ( x ) = ( 1 + ε ) n 0 ( x )
ω ε ( k ) = ω 0 ( k ) 1 + ε

Metrics