Abstract

We generate tunable picosecond anti-Stokes pulses by four-wave mixing of two picosecond pump and Stokes pulse trains in a photonic-crystal fiber. The visible, spectrally narrow anti-Stokes pulses with shifts over 150 nm are generated without generating other spectral features. As a demonstration, we employ the generated anti-Stokes pulses as reference pulses in an interferometric coherent anti-Stokes Raman scattering imaging experiment showing that interpulse coherence among the pump, Stokes and anti-Stokes beams is retained.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A.V. Husakou and J. Herrmann, "Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers," J. Opt. Soc. Am. B 19, 2171-2182 (2002).
    [CrossRef]
  2. G.P. Agrawal, Nonlinear fiber optics, (Academic Press Limited, London, 1995).
  3. M.E. Marhic, N. Kagi, T.-K. Chiang, and L.G. Kazovsky, "Broadband fiber optical parametric amplifiers," Opt. Lett. 21, 573-575 (1996).
    [CrossRef] [PubMed]
  4. S. Wabnitz, "Broadband Parametric Amplification in Photonic Crystal Fibers With Two Zero-Dispersion Wavelengths," J. Lightwave Technol. 24,1732-1738 (2006).
    [CrossRef]
  5. T.V. Andersen, K.M. Hilligsøe, C.K. Nielsen, J. Thøgersen, K.P. Hansen, S.R. Keiding, and J.J. Larsen, "Continous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths," Opt. Express 12, 4113-4122 (2004).
    [CrossRef] [PubMed]
  6. J.E. Sharping, M. Fiorentino, A. Coker, and P. Kumar, "Four-wave mixing in microstructure fiber," Opt. Lett. 26, 1048-1050 (2001).
    [CrossRef]
  7. C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin and A. Bjarklev, "Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM", IEEE Photon. Technnol. Lett. 17, 2655-2657 (2005).
    [CrossRef]
  8. A. Zhang and M.A. Demokan, "Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber," Opt. Lett. 30, 2375-2378 (2005).
    [CrossRef] [PubMed]
  9. G.L. Eesley, M.D. Levenson, andW.M. Tolles, "Optically Heterodyned Coherent Raman Spectroscopy," IEEE J. Quantum Electron. 14, 1, 45-49 (1978).
    [CrossRef]
  10. E.O. Potma, C.L. Evans, and X. Sunney Xie, "Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging," Opt. Lett. 31, 241-243 (2006).
    [CrossRef] [PubMed]
  11. D.L. Marks, C. Vinegoni, J.S. Bredfeldt, and S.A. Boppart, "Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes," Appl. Phys. Lett. 85, 5787- 5789 (2004).
    [CrossRef]
  12. C.L. Evans, E.O. Potma, and X.S. Xie, "Coherent anti-Stokes Raman scattering (CARS) spectral interferometry: Determination of the real and imaginary components of the nonlinear susceptibility for vibrational microscopy," Opt. Lett. 29, 2923-2925 (2004).
    [CrossRef]
  13. S.H. Lim, A. Caster, S.R. Leone, "Single pulse phase-control interferometric coherent anti-stokes raman scattering spectroscopy (CARS)," Phys. Rev. A 72, 041803(1-4) (2005)
    [CrossRef]
  14. T.W. Kee, H. Zhao, and M.T. Cicerone, "One-laser inferferometric broadband coherent anti-Stokes Raman scattering," Opt. Express,  14, 3631-3636 (2006).
    [CrossRef] [PubMed]
  15. V.V. Krishnamachari, E.R. Andresen, S.R. Keiding, and E.O. Potma, "An active interferometer-stabilization scheme with linear phase control," Opt. Express 14, 5210-5215 (2006).
    [CrossRef] [PubMed]
  16. S. Diddams and J.C. "Dispersion measurements with white-light interferometry," J. Opt. Soc. Am. B 13, 1120- 1129 (1996).
    [CrossRef]
  17. J.M. Dudley, S. Coen, "Coherence properties of supercontinuumspectra generated in photonic crystal and tapered optical fibers," Opt. Lett. 27, 1180-1182 (2002).
    [CrossRef]
  18. J.W. Hahn and E.S. Lee, "Measurement of nonresonant third-order susceptibilities of various gases by the nonlinear interferometric technique," J. Opt. Soc. Am. B 12, 1021-1027 (1995).
    [CrossRef]

2006 (4)

2005 (2)

A. Zhang and M.A. Demokan, "Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber," Opt. Lett. 30, 2375-2378 (2005).
[CrossRef] [PubMed]

C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin and A. Bjarklev, "Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM", IEEE Photon. Technnol. Lett. 17, 2655-2657 (2005).
[CrossRef]

2004 (3)

2002 (2)

2001 (1)

1996 (2)

M.E. Marhic, N. Kagi, T.-K. Chiang, and L.G. Kazovsky, "Broadband fiber optical parametric amplifiers," Opt. Lett. 21, 573-575 (1996).
[CrossRef] [PubMed]

S. Diddams and J.C. "Dispersion measurements with white-light interferometry," J. Opt. Soc. Am. B 13, 1120- 1129 (1996).
[CrossRef]

1995 (1)

1978 (1)

G.L. Eesley, M.D. Levenson, andW.M. Tolles, "Optically Heterodyned Coherent Raman Spectroscopy," IEEE J. Quantum Electron. 14, 1, 45-49 (1978).
[CrossRef]

Andersen, T.V.

Andresen, E.R.

Bjarklev, A.

C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin and A. Bjarklev, "Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM", IEEE Photon. Technnol. Lett. 17, 2655-2657 (2005).
[CrossRef]

Boppart, S.A.

D.L. Marks, C. Vinegoni, J.S. Bredfeldt, and S.A. Boppart, "Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes," Appl. Phys. Lett. 85, 5787- 5789 (2004).
[CrossRef]

Bredfeldt, J.S.

D.L. Marks, C. Vinegoni, J.S. Bredfeldt, and S.A. Boppart, "Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes," Appl. Phys. Lett. 85, 5787- 5789 (2004).
[CrossRef]

Chiang, T.-K.

Chow, K.K.

C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin and A. Bjarklev, "Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM", IEEE Photon. Technnol. Lett. 17, 2655-2657 (2005).
[CrossRef]

Cicerone, M.T.

Coen, S.

Coker, A.

Demokan, M.A.

Diddams, S.

S. Diddams and J.C. "Dispersion measurements with white-light interferometry," J. Opt. Soc. Am. B 13, 1120- 1129 (1996).
[CrossRef]

Dudley, J.M.

Eesley, G.L.

G.L. Eesley, M.D. Levenson, andW.M. Tolles, "Optically Heterodyned Coherent Raman Spectroscopy," IEEE J. Quantum Electron. 14, 1, 45-49 (1978).
[CrossRef]

Evans, C.L.

Fiorentino, M.

Hahn, J.W.

Hansen, K.P.

Herrmann, J.

Hilligsøe, K.M.

Husakou, A.V.

Kagi, N.

Kazovsky, L.G.

Kee, T.W.

Keiding, S.R.

Krishnamachari, V.V.

Kumar, P.

Kwok, C.H.

C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin and A. Bjarklev, "Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM", IEEE Photon. Technnol. Lett. 17, 2655-2657 (2005).
[CrossRef]

Larsen, J.J.

Lee, E.S.

Lee, S.H.

C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin and A. Bjarklev, "Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM", IEEE Photon. Technnol. Lett. 17, 2655-2657 (2005).
[CrossRef]

Levenson, M.D.

G.L. Eesley, M.D. Levenson, andW.M. Tolles, "Optically Heterodyned Coherent Raman Spectroscopy," IEEE J. Quantum Electron. 14, 1, 45-49 (1978).
[CrossRef]

Lin, C.

C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin and A. Bjarklev, "Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM", IEEE Photon. Technnol. Lett. 17, 2655-2657 (2005).
[CrossRef]

Marhic, M.E.

Marks, D.L.

D.L. Marks, C. Vinegoni, J.S. Bredfeldt, and S.A. Boppart, "Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes," Appl. Phys. Lett. 85, 5787- 5789 (2004).
[CrossRef]

Nielsen, C.K.

Potma, E.O.

Sharping, J.E.

Shu, C.

C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin and A. Bjarklev, "Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM", IEEE Photon. Technnol. Lett. 17, 2655-2657 (2005).
[CrossRef]

Sunney Xie, X.

Thøgersen, J.

Vinegoni, C.

D.L. Marks, C. Vinegoni, J.S. Bredfeldt, and S.A. Boppart, "Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes," Appl. Phys. Lett. 85, 5787- 5789 (2004).
[CrossRef]

Wabnitz, S.

Xie, X.S.

Zhang, A.

Zhao, H.

Appl. Phys. Lett. (1)

D.L. Marks, C. Vinegoni, J.S. Bredfeldt, and S.A. Boppart, "Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes," Appl. Phys. Lett. 85, 5787- 5789 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

G.L. Eesley, M.D. Levenson, andW.M. Tolles, "Optically Heterodyned Coherent Raman Spectroscopy," IEEE J. Quantum Electron. 14, 1, 45-49 (1978).
[CrossRef]

IEEE Photon. Technnol. Lett. (1)

C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin and A. Bjarklev, "Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM", IEEE Photon. Technnol. Lett. 17, 2655-2657 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (3)

Opt. Express (3)

Opt. Lett. (6)

Other (2)

G.P. Agrawal, Nonlinear fiber optics, (Academic Press Limited, London, 1995).

S.H. Lim, A. Caster, S.R. Leone, "Single pulse phase-control interferometric coherent anti-stokes raman scattering spectroscopy (CARS)," Phys. Rev. A 72, 041803(1-4) (2005)
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Phase-matching for FWM in the PCF. The thick line corresponds to Δβ= 0, the thin line to ∣ΔβL/2∣ = π/2.

Fig. 2.
Fig. 2.

Single-pass gain in the PCF normalized to average pump power squared. The solid line is a guide for the eye. The inset shows a representative pump (778 nm) and anti-Stokes (613 nm) spectrum after the PCF. The Stokes at 1064 nm is not shown.

Fig. 3.
Fig. 3.

Experimental setup. L: Laser (PicoTrain, High-Q Lasers); OPO: Optical parametric oscillator (Levante, APE Berlin); BS: Beam splitter; DS: Delay stage; DC: Dichroic mirror; MO: Microscope objective (0.66 NA, Leica Achro 40×); PCF: Photonic-crystal fiber; WP: Wedge prism pair (10°, BK7); M: Microscope (FluoView 300, Olympus).

Fig. 4.
Fig. 4.

Average signal inside a dodecane droplet normalized to average signal in the surrounding water versus wedge position. The solid line is a sinusoidal fit to the points.

Fig. 5.
Fig. 5.

Interferometric CARS images of a dodecane droplet in water. The labels denote Φ. Each image is 256×256 pixels or 175×175 μm. Acquisition time was 2.6 s/image. Pump and Stokes powers at the sample were 2.0 and 4.1 mW, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ β = β as + β S 2 β p .
P as = G a P S ,
G a = P as ( L ) P S ( 0 ) = ( γ P p ) 2 sin 2 ( Δ βL 2 ) ( Δ β 2 ) 2 .
S 2 ( Re χ r ( 3 ) + χ nr ( 3 ) ) E ref E p 2 E S cos ( Φ ) + 2 Im χ r ( 3 ) E ref E p 2 E S sin ( Φ ) [ + non interferometric terms ] ,
S χ r ( 3 ) 2 I p 2 I S + E ref 2 + 2 εIm χ ( 3 ) E p 2 E S E ref sin Φ

Metrics