Abstract

We generate tunable picosecond anti-Stokes pulses by four-wave mixing of two picosecond pump and Stokes pulse trains in a photonic-crystal fiber. The visible, spectrally narrow anti-Stokes pulses with shifts over 150 nm are generated without generating other spectral features. As a demonstration, we employ the generated anti-Stokes pulses as reference pulses in an interferometric coherent anti-Stokes Raman scattering imaging experiment showing that interpulse coherence among the pump, Stokes and anti-Stokes beams is retained.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A.V. Husakou and J. Herrmann, “Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” J. Opt. Soc. Am. B 19, 2171–2182 (2002).
    [CrossRef]
  2. G.P. Agrawal, Nonlinear fiber optics, (Academic Press Limited, London, 1995).
  3. M.E. Marhic, N. Kagi, T.-K. Chiang, and L.G. Kazovsky, “Broadband fiber optical parametric amplifiers,” Opt. Lett. 21, 573–575 (1996).
    [CrossRef] [PubMed]
  4. S. Wabnitz, “Broadband Parametric Amplification in Photonic Crystal Fibers With Two Zero-Dispersion Wavelengths,” J. Lightwave Technol. 24,1732–1738 (2006).
    [CrossRef]
  5. T.V. Andersen, K.M. Hilligsøe, C.K. Nielsen, J. Thøgersen, K.P. Hansen, S.R. Keiding, and J.J. Larsen, “Continous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths,” Opt. Express 12, 4113–4122 (2004).
    [CrossRef] [PubMed]
  6. J.E. Sharping, M. Fiorentino, A. Coker, and P. Kumar, “Four-wave mixing in microstructure fiber,” Opt. Lett. 26, 1048–1050 (2001).
    [CrossRef]
  7. C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM”, IEEE Photon. Technnol. Lett. 17, 2655–2657 (2005).
    [CrossRef]
  8. A. Zhang and M.A. Demokan, “Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber,” Opt. Lett. 30, 2375–2378 (2005).
    [CrossRef] [PubMed]
  9. G.L. Eesley, M.D. Levenson, and W.M. Tolles, “Optically Heterodyned Coherent Raman Spectroscopy,” IEEE J. Quantum Electron. 14, 1, 45–49 (1978).
    [CrossRef]
  10. E.O. Potma, C.L. Evans, and X. Sunney Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31, 241–243 (2006).
    [CrossRef] [PubMed]
  11. D.L. Marks, C. Vinegoni, J.S. Bredfeldt, and S.A. Boppart, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 85, 5787–5789 (2004).
    [CrossRef]
  12. C.L. Evans, E.O. Potma, and X.S. Xie, “Coherent anti-Stokes Raman scattering (CARS) spectral interferometry: Determination of the real and imaginary components of the nonlinear susceptibility for vibrational microscopy,” Opt. Lett. 29, 2923–2925 (2004).
    [CrossRef]
  13. S.H. Lim, A. Caster, and S.R. Leone, “Single pulse phase-control interferometric coherent anti-stokes raman scattering spectroscopy (CARS),” Phys. Rev. A 72, 041803(1–4) (2005)
    [CrossRef]
  14. T.W. Kee, H. Zhao, and M.T. Cicerone, “One-laser inferferometric broadband coherent anti-Stokes Raman scattering,” Opt. Express,  14, 3631–3636 (2006).
    [CrossRef] [PubMed]
  15. V.V. Krishnamachari, E.R. Andresen, S.R. Keiding, and E.O. Potma, “An active interferometer-stabilization scheme with linear phase control,” Opt. Express 14, 5210–5215 (2006).
    [CrossRef] [PubMed]
  16. S. Diddams and J. C. “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13, 1120–1129 (1996).
    [CrossRef]
  17. J.M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
    [CrossRef]
  18. J.W. Hahn and E.S. Lee, “Measurement of nonresonant third-order susceptibilities of various gases by the nonlinear interferometric technique,” J. Opt. Soc. Am. B 12, 1021–1027 (1995).
    [CrossRef]

2006 (4)

2005 (3)

C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM”, IEEE Photon. Technnol. Lett. 17, 2655–2657 (2005).
[CrossRef]

S.H. Lim, A. Caster, and S.R. Leone, “Single pulse phase-control interferometric coherent anti-stokes raman scattering spectroscopy (CARS),” Phys. Rev. A 72, 041803(1–4) (2005)
[CrossRef]

A. Zhang and M.A. Demokan, “Broadband wavelength converter based on four-wave mixing in a highly nonlinear photonic crystal fiber,” Opt. Lett. 30, 2375–2378 (2005).
[CrossRef] [PubMed]

2004 (3)

2002 (2)

2001 (1)

1996 (2)

1995 (1)

1978 (1)

G.L. Eesley, M.D. Levenson, and W.M. Tolles, “Optically Heterodyned Coherent Raman Spectroscopy,” IEEE J. Quantum Electron. 14, 1, 45–49 (1978).
[CrossRef]

Agrawal, G.P.

G.P. Agrawal, Nonlinear fiber optics, (Academic Press Limited, London, 1995).

Andersen, T.V.

Andresen, E.R.

Bjarklev, A.

C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM”, IEEE Photon. Technnol. Lett. 17, 2655–2657 (2005).
[CrossRef]

Boppart, S.A.

D.L. Marks, C. Vinegoni, J.S. Bredfeldt, and S.A. Boppart, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 85, 5787–5789 (2004).
[CrossRef]

Bredfeldt, J.S.

D.L. Marks, C. Vinegoni, J.S. Bredfeldt, and S.A. Boppart, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 85, 5787–5789 (2004).
[CrossRef]

C., J.

Caster, A.

S.H. Lim, A. Caster, and S.R. Leone, “Single pulse phase-control interferometric coherent anti-stokes raman scattering spectroscopy (CARS),” Phys. Rev. A 72, 041803(1–4) (2005)
[CrossRef]

Chiang, T.-K.

Chow, K.K.

C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM”, IEEE Photon. Technnol. Lett. 17, 2655–2657 (2005).
[CrossRef]

Cicerone, M.T.

Coen, S.

Coker, A.

Demokan, M.A.

Diddams, S.

Dudley, J.M.

Eesley, G.L.

G.L. Eesley, M.D. Levenson, and W.M. Tolles, “Optically Heterodyned Coherent Raman Spectroscopy,” IEEE J. Quantum Electron. 14, 1, 45–49 (1978).
[CrossRef]

Evans, C.L.

Fiorentino, M.

Hahn, J.W.

Hansen, K.P.

Herrmann, J.

Hilligsøe, K.M.

Husakou, A.V.

Kagi, N.

Kazovsky, L.G.

Kee, T.W.

Keiding, S.R.

Krishnamachari, V.V.

Kumar, P.

Kwok, C.H.

C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM”, IEEE Photon. Technnol. Lett. 17, 2655–2657 (2005).
[CrossRef]

Larsen, J.J.

Lee, E.S.

Lee, S.H.

C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM”, IEEE Photon. Technnol. Lett. 17, 2655–2657 (2005).
[CrossRef]

Leone, S.R.

S.H. Lim, A. Caster, and S.R. Leone, “Single pulse phase-control interferometric coherent anti-stokes raman scattering spectroscopy (CARS),” Phys. Rev. A 72, 041803(1–4) (2005)
[CrossRef]

Levenson, M.D.

G.L. Eesley, M.D. Levenson, and W.M. Tolles, “Optically Heterodyned Coherent Raman Spectroscopy,” IEEE J. Quantum Electron. 14, 1, 45–49 (1978).
[CrossRef]

Lim, S.H.

S.H. Lim, A. Caster, and S.R. Leone, “Single pulse phase-control interferometric coherent anti-stokes raman scattering spectroscopy (CARS),” Phys. Rev. A 72, 041803(1–4) (2005)
[CrossRef]

Lin, C.

C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM”, IEEE Photon. Technnol. Lett. 17, 2655–2657 (2005).
[CrossRef]

Marhic, M.E.

Marks, D.L.

D.L. Marks, C. Vinegoni, J.S. Bredfeldt, and S.A. Boppart, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 85, 5787–5789 (2004).
[CrossRef]

Nielsen, C.K.

Potma, E.O.

Sharping, J.E.

Shu, C.

C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM”, IEEE Photon. Technnol. Lett. 17, 2655–2657 (2005).
[CrossRef]

Sunney Xie, X.

Thøgersen, J.

Tolles, W.M.

G.L. Eesley, M.D. Levenson, and W.M. Tolles, “Optically Heterodyned Coherent Raman Spectroscopy,” IEEE J. Quantum Electron. 14, 1, 45–49 (1978).
[CrossRef]

Vinegoni, C.

D.L. Marks, C. Vinegoni, J.S. Bredfeldt, and S.A. Boppart, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 85, 5787–5789 (2004).
[CrossRef]

Wabnitz, S.

Xie, X.S.

Zhang, A.

Zhao, H.

Appl. Phys. Lett. (1)

D.L. Marks, C. Vinegoni, J.S. Bredfeldt, and S.A. Boppart, “Interferometric differentiation between resonant coherent anti-Stokes Raman scattering and nonresonant four-wave-mixing processes,” Appl. Phys. Lett. 85, 5787–5789 (2004).
[CrossRef]

IEEE J. Quantum Electron. (1)

G.L. Eesley, M.D. Levenson, and W.M. Tolles, “Optically Heterodyned Coherent Raman Spectroscopy,” IEEE J. Quantum Electron. 14, 1, 45–49 (1978).
[CrossRef]

IEEE Photon. Technnol. Lett. (1)

C.H. Kwok, S.H. Lee, K.K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Widely tunable wavelength conversion with extinction ratio enhancement using PCF-based NOLM”, IEEE Photon. Technnol. Lett. 17, 2655–2657 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (3)

Opt. Express (3)

Opt. Lett. (6)

Phys. Rev. A (1)

S.H. Lim, A. Caster, and S.R. Leone, “Single pulse phase-control interferometric coherent anti-stokes raman scattering spectroscopy (CARS),” Phys. Rev. A 72, 041803(1–4) (2005)
[CrossRef]

Other (1)

G.P. Agrawal, Nonlinear fiber optics, (Academic Press Limited, London, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Phase-matching for FWM in the PCF. The thick line corresponds to Δβ= 0, the thin line to ∣ΔβL/2∣ = π/2.

Fig. 2.
Fig. 2.

Single-pass gain in the PCF normalized to average pump power squared. The solid line is a guide for the eye. The inset shows a representative pump (778 nm) and anti-Stokes (613 nm) spectrum after the PCF. The Stokes at 1064 nm is not shown.

Fig. 3.
Fig. 3.

Experimental setup. L: Laser (PicoTrain, High-Q Lasers); OPO: Optical parametric oscillator (Levante, APE Berlin); BS: Beam splitter; DS: Delay stage; DC: Dichroic mirror; MO: Microscope objective (0.66 NA, Leica Achro 40×); PCF: Photonic-crystal fiber; WP: Wedge prism pair (10°, BK7); M: Microscope (FluoView 300, Olympus).

Fig. 4.
Fig. 4.

Average signal inside a dodecane droplet normalized to average signal in the surrounding water versus wedge position. The solid line is a sinusoidal fit to the points.

Fig. 5.
Fig. 5.

Interferometric CARS images of a dodecane droplet in water. The labels denote Φ. Each image is 256×256 pixels or 175×175 μm. Acquisition time was 2.6 s/image. Pump and Stokes powers at the sample were 2.0 and 4.1 mW, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ β = β as + β S 2 β p .
P as = G a P S ,
G a = P as ( L ) P S ( 0 ) = ( γ P p ) 2 sin 2 ( Δ βL 2 ) ( Δ β 2 ) 2 .
S 2 ( Re χ r ( 3 ) + χ nr ( 3 ) ) E ref E p 2 E S cos ( Φ ) + 2 Im χ r ( 3 ) E ref E p 2 E S sin ( Φ ) [ + non interferometric terms ] ,
S χ r ( 3 ) 2 I p 2 I S + E ref 2 + 2 εIm χ ( 3 ) E p 2 E S E ref sin Φ

Metrics