Abstract

Fluorescence diffuse optical tomography (DOT) has attracted many attentions from the community of biomedical imaging, since it provides effective enhancement in imaging contrast. This modality is now rapidly evolving as a potential means of monitoring molecular events in small living organisms with help of molecule-specific contrast agents, referred to as fluorescence molecular tomography (FMT). FMT could greatly promote pathogenesis research, drug development, and therapeutic intervention. Although FMT in steady-state and frequency-domain modes have been heavily investigated, the extension to time-domain scheme is imminent for its several unique advantages over the others. By extending the previously developed generalized pulse spectrum technique for time-domain DOT, we propose a linear, featured-data image reconstruction algorithm for time-domain FMT that can simultaneously reconstruct both fluorescent yield and lifetime images of multiple fluorephores, and validate the methodology with simulated data.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.Y. Patthankar, A.U. Chen, B.W. Pogue, M.S. Patterson, and E.M. Sevick-Muraca, "Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media," Appl. Opt. 36, 2260-2272 (1997).
    [CrossRef]
  2. H. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulation," Appl. Opt. 37, 5337-5343 (1998).
    [CrossRef]
  3. E.M. Sevick-Muraca, J.P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-50 (2002).
    [CrossRef] [PubMed]
  4. E.J. Eppstein, D.J. Hawrysz, A. Godavarty and E.M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Proc. Acad. Sci. Am. 99, 9619-9624 (2002).
    [CrossRef]
  5. A.B. Milstein, S. Oh, K.J. Webb, C.A. Bouman, Q Zhang, D.A. Boas, and R.P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-94 (2003).
    [CrossRef] [PubMed]
  6. K. Licha, "Contrast agents for optical imaging," Topics in Current Chemistry 222, 1-29 (2002).
    [CrossRef]
  7. Achilefu, R. Dorshow, J. Bugaj and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
    [CrossRef] [PubMed]
  8. R. Weissleder, C.H. Tung, U. Mahmood and A. Bogdanov, "In vivo imaging with protease-activated near-infrared fluorescent probes," Nat. Biotechnol. 17, 375-378 (1999).
    [CrossRef] [PubMed]
  9. R.E. Campbell, O. Tour, A.E. Palmer, P.A. Steinbach, G.S. Baird, D.A. Zacharias and R. Tsien, "A monometric red fluorescent protein," Proc. Natl. Acad. Sci. USA 99, 7877-7882 (2002).
    [CrossRef] [PubMed]
  10. V. Ntziachristos, C-H Tung, C. Bremer and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-60 (2002).
    [CrossRef] [PubMed]
  11. V. Ntziachristos, C. Bremer, E.E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Molecular Imaging 1, 82-88 (2002).
    [CrossRef]
  12. S. Lam, F. Lesage, and X. Intes, "Time domain fluorescent diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005).
    [CrossRef] [PubMed]
  13. A.T.N. Kumar, J. Skoch, B.J. Bacskai, D.A. Boas, and A.K. Dunn, "Fluorescent-lifetime-based tomography for turbid media," Opt. Lett. 30, 3347-3349 (2005).
    [CrossRef]
  14. X. Cong and G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847-9857 (2005).
    [CrossRef] [PubMed]
  15. S.R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004).
    [CrossRef] [PubMed]
  16. T.F. Massoud and S.S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
    [CrossRef] [PubMed]
  17. A.D. Klose, V. Ntziahristos, and A.H. Hielschler, "The inverse source problem based on the reative trabsfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2002).
    [CrossRef]
  18. S.R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-93 (1999).
    [CrossRef]
  19. F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
    [CrossRef] [PubMed]
  20. R. Model, M. Orlt, and M. Walzel, "Reconstruction algorithm for near-infrared imaging in turbid media by means of time-domain data," J. Opt. Soc. Am. A 14, 313-323 (1997).
    [CrossRef]
  21. M. Schweiger and S.R. Arridge, "Application of temporal filters to time resolved data in optical tomography," Phys. Med. Biol. 44, 1699-1717 (1999).
    [CrossRef] [PubMed]
  22. F. Gao, P. Poulet and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," App.Opt 39, 5898-5910 (2001).
    [CrossRef]
  23. E.M.C. Hillman, J.C. Hebden, M. Schweiger, H. Dehghani, F.E.W. Schmidt, D.T. Delpy and S.R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
    [CrossRef]
  24. J.C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D.T. Delpy, S.R. Arridge, J.H. Meek, and J.S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
    [CrossRef] [PubMed]
  25. F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "Optical tomographic mapping of cerebral haemodynamics by time-domain detection: methodology and phantom validation," Phys. Med. Biol. 49, 1055-1078 (2004).
    [CrossRef] [PubMed]
  26. Huijuan Zhao, Feng Gao, Yukari Tanikawa, Kazuhiro Homma, and Yukio Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
    [CrossRef]
  27. F. Gao, Y. Tanikawa, H.J. Zhao and Y. Yamada, "Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique," Appl. Opt. 41, 7346-7358 (2002).
    [CrossRef] [PubMed]
  28. W.G. Egan and T.W. Hilgeman, Optical Properties of Inhomogeneous Materials, (Academic, New York, 1979).
  29. A.C. Kak and M. Slaney, Principle of Computerized Tomographic Imaging, (IEEE Press, New York, 1988).
  30. F. Gao, H. Niu, H. Zhao and H. Zhang, "The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions," Image and Vision Computing 16, 703-712 (1998).
    [CrossRef]
  31. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Thromberg and C. Depeursinge, "In vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950 (1999).
    [CrossRef]
  32. A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
    [CrossRef] [PubMed]

2005

S. Lam, F. Lesage, and X. Intes, "Time domain fluorescent diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005).
[CrossRef] [PubMed]

A.T.N. Kumar, J. Skoch, B.J. Bacskai, D.A. Boas, and A.K. Dunn, "Fluorescent-lifetime-based tomography for turbid media," Opt. Lett. 30, 3347-3349 (2005).
[CrossRef]

X. Cong and G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847-9857 (2005).
[CrossRef] [PubMed]

Huijuan Zhao, Feng Gao, Yukari Tanikawa, Kazuhiro Homma, and Yukio Yamada, "Time-resolved optical tomographic imaging for the provision of both anatomical and functional information about biological tissue," Appl. Opt. 43, 1905-1916 (2005).
[CrossRef]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

2004

J.C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D.T. Delpy, S.R. Arridge, J.H. Meek, and J.S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "Optical tomographic mapping of cerebral haemodynamics by time-domain detection: methodology and phantom validation," Phys. Med. Biol. 49, 1055-1078 (2004).
[CrossRef] [PubMed]

S.R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004).
[CrossRef] [PubMed]

2003

T.F. Massoud and S.S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef] [PubMed]

A.B. Milstein, S. Oh, K.J. Webb, C.A. Bouman, Q Zhang, D.A. Boas, and R.P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-94 (2003).
[CrossRef] [PubMed]

2002

K. Licha, "Contrast agents for optical imaging," Topics in Current Chemistry 222, 1-29 (2002).
[CrossRef]

E.M. Sevick-Muraca, J.P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-50 (2002).
[CrossRef] [PubMed]

E.J. Eppstein, D.J. Hawrysz, A. Godavarty and E.M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Proc. Acad. Sci. Am. 99, 9619-9624 (2002).
[CrossRef]

A.D. Klose, V. Ntziahristos, and A.H. Hielschler, "The inverse source problem based on the reative trabsfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2002).
[CrossRef]

R.E. Campbell, O. Tour, A.E. Palmer, P.A. Steinbach, G.S. Baird, D.A. Zacharias and R. Tsien, "A monometric red fluorescent protein," Proc. Natl. Acad. Sci. USA 99, 7877-7882 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C-H Tung, C. Bremer and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-60 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E.E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Molecular Imaging 1, 82-88 (2002).
[CrossRef]

F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
[CrossRef] [PubMed]

F. Gao, Y. Tanikawa, H.J. Zhao and Y. Yamada, "Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique," Appl. Opt. 41, 7346-7358 (2002).
[CrossRef] [PubMed]

E.M.C. Hillman, J.C. Hebden, M. Schweiger, H. Dehghani, F.E.W. Schmidt, D.T. Delpy and S.R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
[CrossRef]

2001

F. Gao, P. Poulet and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," App.Opt 39, 5898-5910 (2001).
[CrossRef]

2000

Achilefu, R. Dorshow, J. Bugaj and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
[CrossRef] [PubMed]

1999

R. Weissleder, C.H. Tung, U. Mahmood and A. Bogdanov, "In vivo imaging with protease-activated near-infrared fluorescent probes," Nat. Biotechnol. 17, 375-378 (1999).
[CrossRef] [PubMed]

S.R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-93 (1999).
[CrossRef]

M. Schweiger and S.R. Arridge, "Application of temporal filters to time resolved data in optical tomography," Phys. Med. Biol. 44, 1699-1717 (1999).
[CrossRef] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Thromberg and C. Depeursinge, "In vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950 (1999).
[CrossRef]

1998

F. Gao, H. Niu, H. Zhao and H. Zhang, "The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions," Image and Vision Computing 16, 703-712 (1998).
[CrossRef]

H. Jiang, "Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulation," Appl. Opt. 37, 5337-5343 (1998).
[CrossRef]

1997

Achilefu,

Achilefu, R. Dorshow, J. Bugaj and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
[CrossRef] [PubMed]

Arridge, S.R.

J.C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D.T. Delpy, S.R. Arridge, J.H. Meek, and J.S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

E.M.C. Hillman, J.C. Hebden, M. Schweiger, H. Dehghani, F.E.W. Schmidt, D.T. Delpy and S.R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
[CrossRef]

M. Schweiger and S.R. Arridge, "Application of temporal filters to time resolved data in optical tomography," Phys. Med. Biol. 44, 1699-1717 (1999).
[CrossRef] [PubMed]

S.R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-93 (1999).
[CrossRef]

Austin, T.

J.C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D.T. Delpy, S.R. Arridge, J.H. Meek, and J.S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Bacskai, B.J.

Baird, G.S.

R.E. Campbell, O. Tour, A.E. Palmer, P.A. Steinbach, G.S. Baird, D.A. Zacharias and R. Tsien, "A monometric red fluorescent protein," Proc. Natl. Acad. Sci. USA 99, 7877-7882 (2002).
[CrossRef] [PubMed]

Bevilacqua, F.

Boas, D.A.

Bogdanov, A.

R. Weissleder, C.H. Tung, U. Mahmood and A. Bogdanov, "In vivo imaging with protease-activated near-infrared fluorescent probes," Nat. Biotechnol. 17, 375-378 (1999).
[CrossRef] [PubMed]

Bouman, C.A.

Bremer, C.

V. Ntziachristos, C-H Tung, C. Bremer and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-60 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E.E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Molecular Imaging 1, 82-88 (2002).
[CrossRef]

Campbell, R.E.

R.E. Campbell, O. Tour, A.E. Palmer, P.A. Steinbach, G.S. Baird, D.A. Zacharias and R. Tsien, "A monometric red fluorescent protein," Proc. Natl. Acad. Sci. USA 99, 7877-7882 (2002).
[CrossRef] [PubMed]

Chen, A.U.

Cherry, S.R.

S.R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004).
[CrossRef] [PubMed]

Cong, X.

Dehghani, H.

E.M.C. Hillman, J.C. Hebden, M. Schweiger, H. Dehghani, F.E.W. Schmidt, D.T. Delpy and S.R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
[CrossRef]

Delpy, D.T.

J.C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D.T. Delpy, S.R. Arridge, J.H. Meek, and J.S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

E.M.C. Hillman, J.C. Hebden, M. Schweiger, H. Dehghani, F.E.W. Schmidt, D.T. Delpy and S.R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
[CrossRef]

Depeursinge, C.

Dunn, A.K.

Eppstein, E.J.

E.J. Eppstein, D.J. Hawrysz, A. Godavarty and E.M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Proc. Acad. Sci. Am. 99, 9619-9624 (2002).
[CrossRef]

Everdell, N.

J.C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D.T. Delpy, S.R. Arridge, J.H. Meek, and J.S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Gambhir, S.S.

T.F. Massoud and S.S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef] [PubMed]

Gao, F.

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "Optical tomographic mapping of cerebral haemodynamics by time-domain detection: methodology and phantom validation," Phys. Med. Biol. 49, 1055-1078 (2004).
[CrossRef] [PubMed]

F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
[CrossRef] [PubMed]

F. Gao, Y. Tanikawa, H.J. Zhao and Y. Yamada, "Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique," Appl. Opt. 41, 7346-7358 (2002).
[CrossRef] [PubMed]

F. Gao, P. Poulet and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," App.Opt 39, 5898-5910 (2001).
[CrossRef]

F. Gao, H. Niu, H. Zhao and H. Zhang, "The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions," Image and Vision Computing 16, 703-712 (1998).
[CrossRef]

Gibson, A.

J.C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D.T. Delpy, S.R. Arridge, J.H. Meek, and J.S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Godavarty, A.

E.J. Eppstein, D.J. Hawrysz, A. Godavarty and E.M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Proc. Acad. Sci. Am. 99, 9619-9624 (2002).
[CrossRef]

Graves, E.E.

V. Ntziachristos, C. Bremer, E.E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Molecular Imaging 1, 82-88 (2002).
[CrossRef]

Gross, J. D.

Gurfinkel, M.

E.M. Sevick-Muraca, J.P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-50 (2002).
[CrossRef] [PubMed]

Hawrysz, D.J.

E.J. Eppstein, D.J. Hawrysz, A. Godavarty and E.M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Proc. Acad. Sci. Am. 99, 9619-9624 (2002).
[CrossRef]

Hebden, J.C.

J.C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D.T. Delpy, S.R. Arridge, J.H. Meek, and J.S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

E.M.C. Hillman, J.C. Hebden, M. Schweiger, H. Dehghani, F.E.W. Schmidt, D.T. Delpy and S.R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
[CrossRef]

Hielschler, A.H.

A.D. Klose, V. Ntziahristos, and A.H. Hielschler, "The inverse source problem based on the reative trabsfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2002).
[CrossRef]

Hillman, E.M.C.

E.M.C. Hillman, J.C. Hebden, M. Schweiger, H. Dehghani, F.E.W. Schmidt, D.T. Delpy and S.R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
[CrossRef]

Houston, J.P.

E.M. Sevick-Muraca, J.P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-50 (2002).
[CrossRef] [PubMed]

Intes, X.

Jiang, H.

Klose, A.D.

A.D. Klose, V. Ntziahristos, and A.H. Hielschler, "The inverse source problem based on the reative trabsfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2002).
[CrossRef]

Kumar, A.T.N.

Lam, S.

Lesage, F.

Licha, K.

K. Licha, "Contrast agents for optical imaging," Topics in Current Chemistry 222, 1-29 (2002).
[CrossRef]

Mahmood, U.

R. Weissleder, C.H. Tung, U. Mahmood and A. Bogdanov, "In vivo imaging with protease-activated near-infrared fluorescent probes," Nat. Biotechnol. 17, 375-378 (1999).
[CrossRef] [PubMed]

Marquet, P.

Massoud, T.F.

T.F. Massoud and S.S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef] [PubMed]

Meek, J.H.

J.C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D.T. Delpy, S.R. Arridge, J.H. Meek, and J.S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Millane, R.P.

Milstein, A.B.

Model, R.

Niu, H.

F. Gao, H. Niu, H. Zhao and H. Zhang, "The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions," Image and Vision Computing 16, 703-712 (1998).
[CrossRef]

Ntziachristos, V.

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E.E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Molecular Imaging 1, 82-88 (2002).
[CrossRef]

V. Ntziachristos, C-H Tung, C. Bremer and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-60 (2002).
[CrossRef] [PubMed]

Ntziahristos, V.

A.D. Klose, V. Ntziahristos, and A.H. Hielschler, "The inverse source problem based on the reative trabsfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2002).
[CrossRef]

Oh, S.

Orlt, M.

Palmer, A.E.

R.E. Campbell, O. Tour, A.E. Palmer, P.A. Steinbach, G.S. Baird, D.A. Zacharias and R. Tsien, "A monometric red fluorescent protein," Proc. Natl. Acad. Sci. USA 99, 7877-7882 (2002).
[CrossRef] [PubMed]

Patterson, M.S.

Patthankar, D.Y.

Piguet, D.

Pogue, B.W.

Poulet, P.

F. Gao, P. Poulet and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," App.Opt 39, 5898-5910 (2001).
[CrossRef]

Ripoll, J.

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E.E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Molecular Imaging 1, 82-88 (2002).
[CrossRef]

Schmidt, F.E.W.

E.M.C. Hillman, J.C. Hebden, M. Schweiger, H. Dehghani, F.E.W. Schmidt, D.T. Delpy and S.R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
[CrossRef]

Schweiger, M.

E.M.C. Hillman, J.C. Hebden, M. Schweiger, H. Dehghani, F.E.W. Schmidt, D.T. Delpy and S.R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
[CrossRef]

M. Schweiger and S.R. Arridge, "Application of temporal filters to time resolved data in optical tomography," Phys. Med. Biol. 44, 1699-1717 (1999).
[CrossRef] [PubMed]

Sevick-Muraca, E.M.

E.J. Eppstein, D.J. Hawrysz, A. Godavarty and E.M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Proc. Acad. Sci. Am. 99, 9619-9624 (2002).
[CrossRef]

E.M. Sevick-Muraca, J.P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-50 (2002).
[CrossRef] [PubMed]

D.Y. Patthankar, A.U. Chen, B.W. Pogue, M.S. Patterson, and E.M. Sevick-Muraca, "Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random media," Appl. Opt. 36, 2260-2272 (1997).
[CrossRef]

Skoch, J.

Soubret, A.

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

Steinbach, P.A.

R.E. Campbell, O. Tour, A.E. Palmer, P.A. Steinbach, G.S. Baird, D.A. Zacharias and R. Tsien, "A monometric red fluorescent protein," Proc. Natl. Acad. Sci. USA 99, 7877-7882 (2002).
[CrossRef] [PubMed]

Tanikawa, Y.

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "Optical tomographic mapping of cerebral haemodynamics by time-domain detection: methodology and phantom validation," Phys. Med. Biol. 49, 1055-1078 (2004).
[CrossRef] [PubMed]

F. Gao, Y. Tanikawa, H.J. Zhao and Y. Yamada, "Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique," Appl. Opt. 41, 7346-7358 (2002).
[CrossRef] [PubMed]

Thromberg, B. J.

Tour, O.

R.E. Campbell, O. Tour, A.E. Palmer, P.A. Steinbach, G.S. Baird, D.A. Zacharias and R. Tsien, "A monometric red fluorescent protein," Proc. Natl. Acad. Sci. USA 99, 7877-7882 (2002).
[CrossRef] [PubMed]

Tsien, R.

R.E. Campbell, O. Tour, A.E. Palmer, P.A. Steinbach, G.S. Baird, D.A. Zacharias and R. Tsien, "A monometric red fluorescent protein," Proc. Natl. Acad. Sci. USA 99, 7877-7882 (2002).
[CrossRef] [PubMed]

Tung, C.H.

R. Weissleder, C.H. Tung, U. Mahmood and A. Bogdanov, "In vivo imaging with protease-activated near-infrared fluorescent probes," Nat. Biotechnol. 17, 375-378 (1999).
[CrossRef] [PubMed]

Tung, C-H

V. Ntziachristos, C-H Tung, C. Bremer and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-60 (2002).
[CrossRef] [PubMed]

Walzel, M.

Wang, G.

Webb, K.J.

Weissleder, R.

V. Ntziachristos, C-H Tung, C. Bremer and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-60 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, C. Bremer, E.E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Molecular Imaging 1, 82-88 (2002).
[CrossRef]

R. Weissleder, C.H. Tung, U. Mahmood and A. Bogdanov, "In vivo imaging with protease-activated near-infrared fluorescent probes," Nat. Biotechnol. 17, 375-378 (1999).
[CrossRef] [PubMed]

Wyatt, J.S.

J.C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D.T. Delpy, S.R. Arridge, J.H. Meek, and J.S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Yamada, Y.

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "Optical tomographic mapping of cerebral haemodynamics by time-domain detection: methodology and phantom validation," Phys. Med. Biol. 49, 1055-1078 (2004).
[CrossRef] [PubMed]

F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
[CrossRef] [PubMed]

F. Gao, Y. Tanikawa, H.J. Zhao and Y. Yamada, "Semi-three-dimensional algorithm for time-resolved diffuse optical tomography by use of the generalized pulse spectrum technique," Appl. Opt. 41, 7346-7358 (2002).
[CrossRef] [PubMed]

F. Gao, P. Poulet and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," App.Opt 39, 5898-5910 (2001).
[CrossRef]

Yusof, R.

J.C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D.T. Delpy, S.R. Arridge, J.H. Meek, and J.S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

Zacharias, D.A.

R.E. Campbell, O. Tour, A.E. Palmer, P.A. Steinbach, G.S. Baird, D.A. Zacharias and R. Tsien, "A monometric red fluorescent protein," Proc. Natl. Acad. Sci. USA 99, 7877-7882 (2002).
[CrossRef] [PubMed]

Zhang, H.

F. Gao, H. Niu, H. Zhao and H. Zhang, "The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions," Image and Vision Computing 16, 703-712 (1998).
[CrossRef]

Zhang, Q

Zhao, H.

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "Optical tomographic mapping of cerebral haemodynamics by time-domain detection: methodology and phantom validation," Phys. Med. Biol. 49, 1055-1078 (2004).
[CrossRef] [PubMed]

F. Gao, H. Zhao, and Y. Yamada, "Improvement of image quality in diffuse optical tomography by use of full time-resolved data," Appl. Opt. 41, 778-791 (2002).
[CrossRef] [PubMed]

F. Gao, H. Niu, H. Zhao and H. Zhang, "The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions," Image and Vision Computing 16, 703-712 (1998).
[CrossRef]

Zhao, H.J.

Appl. Opt.

Curr. Opin. Chem. Biol.

E.M. Sevick-Muraca, J.P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near infrared diagnostic imaging with contrast agent," Curr. Opin. Chem. Biol. 6, 642-50 (2002).
[CrossRef] [PubMed]

Genes Dev.

T.F. Massoud and S.S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1386 (2005).
[CrossRef] [PubMed]

Image and Vision Computing

F. Gao, H. Niu, H. Zhao and H. Zhang, "The forward and inverse models in time-resolved optical tomography imaging and their finite-element method solutions," Image and Vision Computing 16, 703-712 (1998).
[CrossRef]

Inverse Probl.

S.R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-93 (1999).
[CrossRef]

Invest. Radiol.

Achilefu, R. Dorshow, J. Bugaj and R. Rajapopalan, "Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging," Invest. Radiol. 35, 479-485 (2000).
[CrossRef] [PubMed]

J. Comput. Phys.

A.D. Klose, V. Ntziahristos, and A.H. Hielschler, "The inverse source problem based on the reative trabsfer equation in optical molecular imaging," J. Comput. Phys. 202, 323-345 (2002).
[CrossRef]

J. Opt. Soc. Am. A

Molecular Imaging

V. Ntziachristos, C. Bremer, E.E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Molecular Imaging 1, 82-88 (2002).
[CrossRef]

Nat. Biotechnol.

R. Weissleder, C.H. Tung, U. Mahmood and A. Bogdanov, "In vivo imaging with protease-activated near-infrared fluorescent probes," Nat. Biotechnol. 17, 375-378 (1999).
[CrossRef] [PubMed]

Nat. Med.

V. Ntziachristos, C-H Tung, C. Bremer and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-60 (2002).
[CrossRef] [PubMed]

Opt

F. Gao, P. Poulet and Y. Yamada, "Simultaneous mapping of absorption and scattering coefficients from a three-dimensional model of time-resolved optical tomography," App.Opt 39, 5898-5910 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

E.M.C. Hillman, J.C. Hebden, M. Schweiger, H. Dehghani, F.E.W. Schmidt, D.T. Delpy and S.R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2002).
[CrossRef]

J.C. Hebden, A. Gibson, T. Austin, R. Yusof, N. Everdell, D.T. Delpy, S.R. Arridge, J.H. Meek, and J.S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004).
[CrossRef] [PubMed]

F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "Optical tomographic mapping of cerebral haemodynamics by time-domain detection: methodology and phantom validation," Phys. Med. Biol. 49, 1055-1078 (2004).
[CrossRef] [PubMed]

M. Schweiger and S.R. Arridge, "Application of temporal filters to time resolved data in optical tomography," Phys. Med. Biol. 44, 1699-1717 (1999).
[CrossRef] [PubMed]

S.R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-48 (2004).
[CrossRef] [PubMed]

Proc. Acad. Sci. Am.

E.J. Eppstein, D.J. Hawrysz, A. Godavarty and E.M. Sevick-Muraca, "Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: Near-infrared fluorescence tomography," Proc. Acad. Sci. Am. 99, 9619-9624 (2002).
[CrossRef]

Proc. Natl. Acad. Sci. USA

R.E. Campbell, O. Tour, A.E. Palmer, P.A. Steinbach, G.S. Baird, D.A. Zacharias and R. Tsien, "A monometric red fluorescent protein," Proc. Natl. Acad. Sci. USA 99, 7877-7882 (2002).
[CrossRef] [PubMed]

Topics in Current Chemistry

K. Licha, "Contrast agents for optical imaging," Topics in Current Chemistry 222, 1-29 (2002).
[CrossRef]

Other

W.G. Egan and T.W. Hilgeman, Optical Properties of Inhomogeneous Materials, (Academic, New York, 1979).

A.C. Kak and M. Slaney, Principle of Computerized Tomographic Imaging, (IEEE Press, New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

FEM mesh and optode configuration employed in the study.

Fig. 2.
Fig. 2.

(a) Original (top) and reconstructed (bottom) images of fluorescent yield and lifetime for Phantom 1, and (b) their profiles along X- and Y-axes.

Fig. 3.
Fig. 3.

(a) Original (top) and reconstructed (bottom) images of fluorescent yield and lifetime for Phantom 2, and (b) original (red) and reconstructed (green) profiles along X-axis.

Fig. 4.
Fig. 4.

(a) Schematic of the phantom used for the evaluating spatial resolution of the algorithm, (b) reconstructed images for CCS=13 mm (top), 15 mm (middle) and 17 mm (bottom), respectively, and (c) profiles of the reconstructed yield and lifetime images along the X-axis.

Fig. 5.
Fig. 5.

Investigation on the noise robustness of the algorithm by imaging the same phantom as in Fig. 4, with the CCS of the two target disks equals to 17 mm, for a varying SNR of 35 db (Top), 40 dB (Middle) and 45 dB (Bottom). (a) Reconstructed yield and lifetime images, and (b) their profiles along the X-axis.

Fig. 6.
Fig. 6.

(a) Original and (b) reconstructed images of the two-component phantom with the fluorescence parameters listed in Table 3: The top row is for the first component and the bottom row for the second component in each sub-figure. The original (red) and reconstructed (green) profiles along X-axis are shown in (c) and (d) for Component 1 and Component 2 respectively.

Fig. 7.
Fig. 7.

Effects of target size (a) and contrast (b) on the reconstruction quantitativeness. (a) Target contrast fixed at 3:1 for a varying radius; (b) Target radius fixed at 4 mm for varying contrast. The same phantom as in Fig. 4 is used with the target CCS=25 mm, and the results are shown for the peak values in the reconstructed images.

Tables (3)

Tables Icon

Table 1. Optical, fluorescent and geometrical parameters of Phantom 1

Tables Icon

Table 2. Optical, fluorescent and geometrical parameters of Phantom 2

Tables Icon

Table 3. Fluorescent parameters in the two-component phantom

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

{ [ D x ( r ) μ ax ( r ) c p ] Φ x ( r , r s , p ) = δ ( r r s ) [ D m ( r ) μ am ( r ) c p ] Φ m ( r , r s , p ) = Φ x ( r , r s , p ) ημ af ( r ) [ 1 + p τ ( r ) ]
Φ v ( r , r s , p ) + 2 KD ( r ) n∙ Φ v ( r , r s , p ) r Ω = 0
Γ v ( ξ d , ζ s , p ) = c Φ v ( ξ d , ζ s , p ) ( 2 K )
( A v + B ) Φ v ( p ) = Q v
{ A v i j = Ω { D v ( r ) u i ( r ) u j ( r ) + [ μ av ( r ) c + p ] u i ( r ) u j ( r ) } d r B i j = c Ω u i ( r ) u j ( r ) d r ( 2 K ) C i j = Ω u i ( r ) u j ( r ) d r Q v i t = { Ω u i ( r ) δ ( r r s ) d Ω = u i ( r s ) v = x j = 1 N C i j Φ x j p ημ af ( j ) [ 1 + p τ ( j ) ] v = m
{ Γ m ( ξ d , ζ s , p ) = Ω G m ( ξ d , r , p ) Φ x r ζ s p x r p d Ω x r p = ημ af ( r ) [ 1 + p τ ( r ) ]
{ [ D m ( r ) μ am ( r ) c p ] Φ m ( r , r ' , p ) = δ ( r r ' ) Φ m ( r , r ' , p ) + 2 KD ( r ) n∙ Φ m ( r , r ' , p ) r Ω = 0 G m ( ξ d , r ' , p ) = ( cK 2 ) Φ m ( r , r ' , p ) r=ξd
Γ ( p ) = W ( p ) x ( p )
Γ ( p ) = [ Γ m ( ξ 1 , ζ 1 , p ) , Γ m ( ξ 2 , ζ 1 , p ) , , Γ m ( ξ D , ζ S , p ) ] T
W ( p ) = [ W ( ξ 1 , ζ 1 , p , 1 ) , W ( ξ 1 , ζ 1 , p , 2 ) , , W ( ξ 1 , ζ 1 , p , N ) W ( ξ 2 , ζ 1 , p , 1 ) , W ( ξ 2 , ζ 1 , p , 2 ) , , W ( ξ 2 , ζ 1 , p , N ) W ( ξ D , ζ S , p , 1 ) , W ( ξ D , ζ S , p , 2 ) , , W ( ξ D , ζ S , p , N ) ]
W ds ( ξ d , ζ s , p , n ) = Ω n G ̄ m ( Ω n ) ( ξ d , p ) Φ ̄ m ( Ω n ) ( ζ s , p ) Ω n u n ( r ) d Ω
{ x k + 1 ( p ) = x k ( p ) + λ Γ ( ( k mod SD ) + 1 ) ( p ) W ( k mod SD ) + 1 ) ( p ) x k ( p ) [ W ( k mod SD + 1 ) ( p ) ] [ W ( k mod SD + 1 ) ( p ) T k = 0,1,2 , ( MSD 1 )
{ ημ af ( r ) = ( p 1 p 2 ) x ( r , p 1 ) x ( r , p 2 ) [ p 1 x ( r , p 1 ) p 2 x ( r , p 2 ) ] τ ( r ) = [ x ( r , p 1 ) x ( r , p 2 ) ] [ p 1 x ( r , p 1 ) p 2 x ( r , p 2 ) ]
x r p = i = 1 N c ημ afi ( r ) [ 1 + p τ i ( r ) ]
{ ημ a 1 ( r ) [ 1 + p 1 τ 1 ( r ) ] + ημ a 2 ( r ) [ 1 + p 1 τ 2 ( r ) ] = x ( r , p 1 ) ημ a 1 ( r ) [ 1 + p 2 τ 1 ( r ) ] + ημ a 2 ( r ) [ 1 + p 2 τ 2 ( r ) ] = x ( r , p 2 ) ημ a 1 ( r ) [ 1 + p 2 N c τ 1 ( r ) ] + ημ a 2 ( r ) [ 1 + p 2 N c τ 2 ( r ) ] = x ( r , p 2 N c )
{ α 1 ( r ) = ημ af 1 ( r ) + ημ af 2 ( r ) α 2 ( r ) = ημ af 1 ( r ) τ 2 ( r ) + ημ af 2 ( r ) τ 1 ( r ) α 3 ( r ) = τ 1 ( r ) + τ 2 ( r ) α 4 ( r ) = τ 1 ( r ) + τ 2 ( r )
x ( r ) = M ( r ) α ( r )
M ( r ) = [ 1 , p 1 , p 1 x ( r , p 1 ) , p 1 2 x ( r , p 1 ) 1 , p 2 , p 2 x ( r , p 2 ) , p 2 2 x ( r , p 2 ) 1 , p 2 N c , p 2 N c x ( r , p 2 N c ) p 2 N c 2 x ( r , p 2 N c ) ]
α ( r ) = [ α 1 ( r ) , α 2 ( r ) , α 3 ( r ) , α 4 ( r ) ] T
x ( r ) = [ x ( r , p 1 ) , x ( r , p 2 ) , , x ( r , p 2 N c ) ] T
{ τ 1 ( r ) = [ α 3 ( r ) α 3 2 ( r ) 4 α 4 ( r ) ] 2 τ 2 ( r ) = [ α 3 ( r ) + α 3 2 ( r ) 4 α 4 ( r ) ] 2 ημ af 1 ( r ) = [ α 1 ( r ) τ 1 ( r ) α 2 ( r ) ] [ τ 1 ( r ) τ 2 ( r ) ] ημ af 2 ( r ) = [ α 1 ( r ) τ 2 ( r ) α 2 ( r ) ] [ τ 1 ( r ) τ 2 ( r ) ]
α ( r ) = arg min { x ( r ) M ( r ) α ( r ) 2 + β R ( r ) [ α ( r ) α B ( r ) ] 2 }
M ( r ) T M ( r ) + β R ( r ) T R ( r ) α ( r ) = β R ( r ) T R ( r ) α B ( r ) + M ( r ) T x ( r )
C 1 Γ ( p ) = C 1 W ( p ) x ( p )
Γ m ( ξ d , ζ s , p ) = [ Γ m ( A ) ( ξ d , ζ s , p ) Γ m ( B ) ( ξ d , ζ s , p ) ] + Γ m ( M ) ( ξ d , ζ s , p )

Metrics