Abstract

We propose a novel configuration for a highly integrated and highly sensitive optical biosensor. The basic element of the sensor is a surface plasmon interferometer consisting of a thin layer of gold embedded in a silicon membrane. We investigate the performance of the sensor by simulation using eigenmode expansion. We calculate that refractive index changes in the order of 10-6 RIU should be easily detectable for a component of length 10 μm. Moreover, we illustrate that the operation wavelength of the sensor can be easily tuned to a desired wavelength for a wide range of environmental refractive indices, making our device suitable for chemo- and biosensing.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J Homola, “Present and Future of Surface Plasmon Resonance Biosensors,” Anal. Bioanan. Chem.,  377, 528–539 (2003)
    [Crossref]
  2. J. Čtyrocký, J Homola, PV Lambeck, S Musa, HJWM Hoekstra, RD Harris, JS Wilkinson, B Usievich, and NM Lyn-din, “Theory and Modelling of Optical Waveguide Sensors Utilising Surface Plasmon Resonance,” Sens. Actuators B,  54, 66 – 73 (1999)
    [Crossref]
  3. Rd Harris and JS Wilkinson, “Waveguide Surface Plasmon Resonance Sensors,” Sens. Actuators B,  29, 261 – 267 (1995)
    [Crossref]
  4. J Homola, J Čtyrocký, M Skalský, J Hradilová, and P Kolářová, “A Surface Plasmon Resonance Based Integrated Optical Sensor,” Sens. Actuators B,  38–39, 286 – 290 (1997)
    [Crossref]
  5. J Dostálek, J Čtyrocký, J Homola, E Brynda, M Skalský, P Nekvindová, J Špiriková, J Škvor, and J Schröfel, “Surface Plasmon Resonance Biosensor based on Integrated Optical Waveguide,” Sens. Actuators B,  76, 8 – 12 (2001)
    [Crossref]
  6. W Bogaerts, R Baets, P Dumon, V Wiaux, S Beckx, D Taillaert, B Luyssaert, J Van Campenhout, P Bienstman, and D Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol.,  23(1), 401–412 (2005)
    [Crossref]
  7. B Luff, J Wilkinson, J Piehler, U Hollenbach, J Ingenhoff, and N Fabricius, “Integrated Optical Mach-Zehnder Biosensor,” J. Lightwave Technol.,  16, 583–592 (1998)
    [Crossref]
  8. F Prieto, Sepúlveda, A Calle, A Llobera, C Domínguez, A Abad, A Montoya, and L M Lechuga, “An Integrated Optical Interferometric Nanodevice based on Silicon Technology for Biosensor Applications,” Nanotechnology,  14, 907–912 (2003)
    [Crossref]
  9. Handbook of Optical Constants of Solids, edited by E. Palik, Academic Press New York (1985)
  10. T Nikolajsen, K Leosson, I Salakhutdinov, and S Bozhevolnyi, “Polymer-based Surface-Plasmon-Polariton Stripe Waveguides at Telecommunication Wavelengths,” Applied Physics Letters,  82, 668–670 (2003)
    [Crossref]
  11. M Hochberg, T Baehr-Jones, C Walker, and A Scherer, “Integrated Plasmon and Dielectric Waveguides,” Opt. Express,  125481–5486 (2002)
    [Crossref]
  12. J Homola, S Sinclair, and G Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Sens. Actuators B,  54, 3–15 (1999)
    [Crossref]
  13. FJ Bueno, O Esteban, N Díaz-Herrara, MC Navarrete, and A González-Cano, “Sensing Properties of Asymmetric Double-Layer-Covered Tapered Fibers,” Applied Optics,  43, 1615–1620 (2004)
    [Crossref] [PubMed]
  14. CAMFR, http://sourceforge.org/projects/CAMFR
  15. P Bienstman and R Baets, “Optical Modelling of Photonic Crystals and VCSELs using Eigenmode Expansion and Perfectly Matched Layers,” Opt. Quantum Electron 33, 327–341 (2001)
    [Crossref]
  16. P Debackere, P Bienstman, and R Baets, “Improved ASR Convergence for the Simulation of Surface Plasmon Waveguide Modes,” OWTNM 2006 Proceedings, 14 (2006)
  17. P Debackere, P Bienstman, and R Baets, “Improved ASR Convergence for the Simulation of Surface Plasmon Waveguide Modes,” to appear in special issue of Optical and Quantum Electronics on Optical Waveguide Theory and Numerical Modeling (2006)

2006 (1)

P Debackere, P Bienstman, and R Baets, “Improved ASR Convergence for the Simulation of Surface Plasmon Waveguide Modes,” OWTNM 2006 Proceedings, 14 (2006)

2005 (1)

W Bogaerts, R Baets, P Dumon, V Wiaux, S Beckx, D Taillaert, B Luyssaert, J Van Campenhout, P Bienstman, and D Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol.,  23(1), 401–412 (2005)
[Crossref]

2004 (1)

FJ Bueno, O Esteban, N Díaz-Herrara, MC Navarrete, and A González-Cano, “Sensing Properties of Asymmetric Double-Layer-Covered Tapered Fibers,” Applied Optics,  43, 1615–1620 (2004)
[Crossref] [PubMed]

2003 (3)

J Homola, “Present and Future of Surface Plasmon Resonance Biosensors,” Anal. Bioanan. Chem.,  377, 528–539 (2003)
[Crossref]

F Prieto, Sepúlveda, A Calle, A Llobera, C Domínguez, A Abad, A Montoya, and L M Lechuga, “An Integrated Optical Interferometric Nanodevice based on Silicon Technology for Biosensor Applications,” Nanotechnology,  14, 907–912 (2003)
[Crossref]

T Nikolajsen, K Leosson, I Salakhutdinov, and S Bozhevolnyi, “Polymer-based Surface-Plasmon-Polariton Stripe Waveguides at Telecommunication Wavelengths,” Applied Physics Letters,  82, 668–670 (2003)
[Crossref]

2002 (1)

2001 (2)

J Dostálek, J Čtyrocký, J Homola, E Brynda, M Skalský, P Nekvindová, J Špiriková, J Škvor, and J Schröfel, “Surface Plasmon Resonance Biosensor based on Integrated Optical Waveguide,” Sens. Actuators B,  76, 8 – 12 (2001)
[Crossref]

P Bienstman and R Baets, “Optical Modelling of Photonic Crystals and VCSELs using Eigenmode Expansion and Perfectly Matched Layers,” Opt. Quantum Electron 33, 327–341 (2001)
[Crossref]

1999 (2)

J. Čtyrocký, J Homola, PV Lambeck, S Musa, HJWM Hoekstra, RD Harris, JS Wilkinson, B Usievich, and NM Lyn-din, “Theory and Modelling of Optical Waveguide Sensors Utilising Surface Plasmon Resonance,” Sens. Actuators B,  54, 66 – 73 (1999)
[Crossref]

J Homola, S Sinclair, and G Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Sens. Actuators B,  54, 3–15 (1999)
[Crossref]

1998 (1)

1997 (1)

J Homola, J Čtyrocký, M Skalský, J Hradilová, and P Kolářová, “A Surface Plasmon Resonance Based Integrated Optical Sensor,” Sens. Actuators B,  38–39, 286 – 290 (1997)
[Crossref]

1995 (1)

Rd Harris and JS Wilkinson, “Waveguide Surface Plasmon Resonance Sensors,” Sens. Actuators B,  29, 261 – 267 (1995)
[Crossref]

Abad, A

F Prieto, Sepúlveda, A Calle, A Llobera, C Domínguez, A Abad, A Montoya, and L M Lechuga, “An Integrated Optical Interferometric Nanodevice based on Silicon Technology for Biosensor Applications,” Nanotechnology,  14, 907–912 (2003)
[Crossref]

Baehr-Jones, T

Baets, R

P Debackere, P Bienstman, and R Baets, “Improved ASR Convergence for the Simulation of Surface Plasmon Waveguide Modes,” OWTNM 2006 Proceedings, 14 (2006)

W Bogaerts, R Baets, P Dumon, V Wiaux, S Beckx, D Taillaert, B Luyssaert, J Van Campenhout, P Bienstman, and D Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol.,  23(1), 401–412 (2005)
[Crossref]

P Bienstman and R Baets, “Optical Modelling of Photonic Crystals and VCSELs using Eigenmode Expansion and Perfectly Matched Layers,” Opt. Quantum Electron 33, 327–341 (2001)
[Crossref]

P Debackere, P Bienstman, and R Baets, “Improved ASR Convergence for the Simulation of Surface Plasmon Waveguide Modes,” to appear in special issue of Optical and Quantum Electronics on Optical Waveguide Theory and Numerical Modeling (2006)

Beckx, S

W Bogaerts, R Baets, P Dumon, V Wiaux, S Beckx, D Taillaert, B Luyssaert, J Van Campenhout, P Bienstman, and D Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol.,  23(1), 401–412 (2005)
[Crossref]

Bienstman, P

P Debackere, P Bienstman, and R Baets, “Improved ASR Convergence for the Simulation of Surface Plasmon Waveguide Modes,” OWTNM 2006 Proceedings, 14 (2006)

W Bogaerts, R Baets, P Dumon, V Wiaux, S Beckx, D Taillaert, B Luyssaert, J Van Campenhout, P Bienstman, and D Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol.,  23(1), 401–412 (2005)
[Crossref]

P Bienstman and R Baets, “Optical Modelling of Photonic Crystals and VCSELs using Eigenmode Expansion and Perfectly Matched Layers,” Opt. Quantum Electron 33, 327–341 (2001)
[Crossref]

P Debackere, P Bienstman, and R Baets, “Improved ASR Convergence for the Simulation of Surface Plasmon Waveguide Modes,” to appear in special issue of Optical and Quantum Electronics on Optical Waveguide Theory and Numerical Modeling (2006)

Bogaerts, W

W Bogaerts, R Baets, P Dumon, V Wiaux, S Beckx, D Taillaert, B Luyssaert, J Van Campenhout, P Bienstman, and D Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol.,  23(1), 401–412 (2005)
[Crossref]

Bozhevolnyi, S

T Nikolajsen, K Leosson, I Salakhutdinov, and S Bozhevolnyi, “Polymer-based Surface-Plasmon-Polariton Stripe Waveguides at Telecommunication Wavelengths,” Applied Physics Letters,  82, 668–670 (2003)
[Crossref]

Brynda, E

J Dostálek, J Čtyrocký, J Homola, E Brynda, M Skalský, P Nekvindová, J Špiriková, J Škvor, and J Schröfel, “Surface Plasmon Resonance Biosensor based on Integrated Optical Waveguide,” Sens. Actuators B,  76, 8 – 12 (2001)
[Crossref]

Bueno, FJ

FJ Bueno, O Esteban, N Díaz-Herrara, MC Navarrete, and A González-Cano, “Sensing Properties of Asymmetric Double-Layer-Covered Tapered Fibers,” Applied Optics,  43, 1615–1620 (2004)
[Crossref] [PubMed]

Calle, A

F Prieto, Sepúlveda, A Calle, A Llobera, C Domínguez, A Abad, A Montoya, and L M Lechuga, “An Integrated Optical Interferometric Nanodevice based on Silicon Technology for Biosensor Applications,” Nanotechnology,  14, 907–912 (2003)
[Crossref]

Campenhout, J Van

W Bogaerts, R Baets, P Dumon, V Wiaux, S Beckx, D Taillaert, B Luyssaert, J Van Campenhout, P Bienstman, and D Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol.,  23(1), 401–412 (2005)
[Crossref]

Ctyrocký, J

J Dostálek, J Čtyrocký, J Homola, E Brynda, M Skalský, P Nekvindová, J Špiriková, J Škvor, and J Schröfel, “Surface Plasmon Resonance Biosensor based on Integrated Optical Waveguide,” Sens. Actuators B,  76, 8 – 12 (2001)
[Crossref]

J Homola, J Čtyrocký, M Skalský, J Hradilová, and P Kolářová, “A Surface Plasmon Resonance Based Integrated Optical Sensor,” Sens. Actuators B,  38–39, 286 – 290 (1997)
[Crossref]

Ctyrocký, J.

J. Čtyrocký, J Homola, PV Lambeck, S Musa, HJWM Hoekstra, RD Harris, JS Wilkinson, B Usievich, and NM Lyn-din, “Theory and Modelling of Optical Waveguide Sensors Utilising Surface Plasmon Resonance,” Sens. Actuators B,  54, 66 – 73 (1999)
[Crossref]

Debackere, P

P Debackere, P Bienstman, and R Baets, “Improved ASR Convergence for the Simulation of Surface Plasmon Waveguide Modes,” OWTNM 2006 Proceedings, 14 (2006)

P Debackere, P Bienstman, and R Baets, “Improved ASR Convergence for the Simulation of Surface Plasmon Waveguide Modes,” to appear in special issue of Optical and Quantum Electronics on Optical Waveguide Theory and Numerical Modeling (2006)

Díaz-Herrara, N

FJ Bueno, O Esteban, N Díaz-Herrara, MC Navarrete, and A González-Cano, “Sensing Properties of Asymmetric Double-Layer-Covered Tapered Fibers,” Applied Optics,  43, 1615–1620 (2004)
[Crossref] [PubMed]

Domínguez, C

F Prieto, Sepúlveda, A Calle, A Llobera, C Domínguez, A Abad, A Montoya, and L M Lechuga, “An Integrated Optical Interferometric Nanodevice based on Silicon Technology for Biosensor Applications,” Nanotechnology,  14, 907–912 (2003)
[Crossref]

Dostálek, J

J Dostálek, J Čtyrocký, J Homola, E Brynda, M Skalský, P Nekvindová, J Špiriková, J Škvor, and J Schröfel, “Surface Plasmon Resonance Biosensor based on Integrated Optical Waveguide,” Sens. Actuators B,  76, 8 – 12 (2001)
[Crossref]

Dumon, P

W Bogaerts, R Baets, P Dumon, V Wiaux, S Beckx, D Taillaert, B Luyssaert, J Van Campenhout, P Bienstman, and D Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol.,  23(1), 401–412 (2005)
[Crossref]

Esteban, O

FJ Bueno, O Esteban, N Díaz-Herrara, MC Navarrete, and A González-Cano, “Sensing Properties of Asymmetric Double-Layer-Covered Tapered Fibers,” Applied Optics,  43, 1615–1620 (2004)
[Crossref] [PubMed]

Fabricius, N

Gauglitz, G

J Homola, S Sinclair, and G Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Sens. Actuators B,  54, 3–15 (1999)
[Crossref]

González-Cano, A

FJ Bueno, O Esteban, N Díaz-Herrara, MC Navarrete, and A González-Cano, “Sensing Properties of Asymmetric Double-Layer-Covered Tapered Fibers,” Applied Optics,  43, 1615–1620 (2004)
[Crossref] [PubMed]

Harris, RD

J. Čtyrocký, J Homola, PV Lambeck, S Musa, HJWM Hoekstra, RD Harris, JS Wilkinson, B Usievich, and NM Lyn-din, “Theory and Modelling of Optical Waveguide Sensors Utilising Surface Plasmon Resonance,” Sens. Actuators B,  54, 66 – 73 (1999)
[Crossref]

Rd Harris and JS Wilkinson, “Waveguide Surface Plasmon Resonance Sensors,” Sens. Actuators B,  29, 261 – 267 (1995)
[Crossref]

Hochberg, M

Hoekstra, HJWM

J. Čtyrocký, J Homola, PV Lambeck, S Musa, HJWM Hoekstra, RD Harris, JS Wilkinson, B Usievich, and NM Lyn-din, “Theory and Modelling of Optical Waveguide Sensors Utilising Surface Plasmon Resonance,” Sens. Actuators B,  54, 66 – 73 (1999)
[Crossref]

Hollenbach, U

Homola, J

J Homola, “Present and Future of Surface Plasmon Resonance Biosensors,” Anal. Bioanan. Chem.,  377, 528–539 (2003)
[Crossref]

J Dostálek, J Čtyrocký, J Homola, E Brynda, M Skalský, P Nekvindová, J Špiriková, J Škvor, and J Schröfel, “Surface Plasmon Resonance Biosensor based on Integrated Optical Waveguide,” Sens. Actuators B,  76, 8 – 12 (2001)
[Crossref]

J. Čtyrocký, J Homola, PV Lambeck, S Musa, HJWM Hoekstra, RD Harris, JS Wilkinson, B Usievich, and NM Lyn-din, “Theory and Modelling of Optical Waveguide Sensors Utilising Surface Plasmon Resonance,” Sens. Actuators B,  54, 66 – 73 (1999)
[Crossref]

J Homola, S Sinclair, and G Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Sens. Actuators B,  54, 3–15 (1999)
[Crossref]

J Homola, J Čtyrocký, M Skalský, J Hradilová, and P Kolářová, “A Surface Plasmon Resonance Based Integrated Optical Sensor,” Sens. Actuators B,  38–39, 286 – 290 (1997)
[Crossref]

Hradilová, J

J Homola, J Čtyrocký, M Skalský, J Hradilová, and P Kolářová, “A Surface Plasmon Resonance Based Integrated Optical Sensor,” Sens. Actuators B,  38–39, 286 – 290 (1997)
[Crossref]

Ingenhoff, J

Kolárová, P

J Homola, J Čtyrocký, M Skalský, J Hradilová, and P Kolářová, “A Surface Plasmon Resonance Based Integrated Optical Sensor,” Sens. Actuators B,  38–39, 286 – 290 (1997)
[Crossref]

Lambeck, PV

J. Čtyrocký, J Homola, PV Lambeck, S Musa, HJWM Hoekstra, RD Harris, JS Wilkinson, B Usievich, and NM Lyn-din, “Theory and Modelling of Optical Waveguide Sensors Utilising Surface Plasmon Resonance,” Sens. Actuators B,  54, 66 – 73 (1999)
[Crossref]

Lechuga, L M

F Prieto, Sepúlveda, A Calle, A Llobera, C Domínguez, A Abad, A Montoya, and L M Lechuga, “An Integrated Optical Interferometric Nanodevice based on Silicon Technology for Biosensor Applications,” Nanotechnology,  14, 907–912 (2003)
[Crossref]

Leosson, K

T Nikolajsen, K Leosson, I Salakhutdinov, and S Bozhevolnyi, “Polymer-based Surface-Plasmon-Polariton Stripe Waveguides at Telecommunication Wavelengths,” Applied Physics Letters,  82, 668–670 (2003)
[Crossref]

Llobera, A

F Prieto, Sepúlveda, A Calle, A Llobera, C Domínguez, A Abad, A Montoya, and L M Lechuga, “An Integrated Optical Interferometric Nanodevice based on Silicon Technology for Biosensor Applications,” Nanotechnology,  14, 907–912 (2003)
[Crossref]

Luff, B

Luyssaert, B

W Bogaerts, R Baets, P Dumon, V Wiaux, S Beckx, D Taillaert, B Luyssaert, J Van Campenhout, P Bienstman, and D Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol.,  23(1), 401–412 (2005)
[Crossref]

Lyn-din, NM

J. Čtyrocký, J Homola, PV Lambeck, S Musa, HJWM Hoekstra, RD Harris, JS Wilkinson, B Usievich, and NM Lyn-din, “Theory and Modelling of Optical Waveguide Sensors Utilising Surface Plasmon Resonance,” Sens. Actuators B,  54, 66 – 73 (1999)
[Crossref]

Montoya, A

F Prieto, Sepúlveda, A Calle, A Llobera, C Domínguez, A Abad, A Montoya, and L M Lechuga, “An Integrated Optical Interferometric Nanodevice based on Silicon Technology for Biosensor Applications,” Nanotechnology,  14, 907–912 (2003)
[Crossref]

Musa, S

J. Čtyrocký, J Homola, PV Lambeck, S Musa, HJWM Hoekstra, RD Harris, JS Wilkinson, B Usievich, and NM Lyn-din, “Theory and Modelling of Optical Waveguide Sensors Utilising Surface Plasmon Resonance,” Sens. Actuators B,  54, 66 – 73 (1999)
[Crossref]

Navarrete, MC

FJ Bueno, O Esteban, N Díaz-Herrara, MC Navarrete, and A González-Cano, “Sensing Properties of Asymmetric Double-Layer-Covered Tapered Fibers,” Applied Optics,  43, 1615–1620 (2004)
[Crossref] [PubMed]

Nekvindová, P

J Dostálek, J Čtyrocký, J Homola, E Brynda, M Skalský, P Nekvindová, J Špiriková, J Škvor, and J Schröfel, “Surface Plasmon Resonance Biosensor based on Integrated Optical Waveguide,” Sens. Actuators B,  76, 8 – 12 (2001)
[Crossref]

Nikolajsen, T

T Nikolajsen, K Leosson, I Salakhutdinov, and S Bozhevolnyi, “Polymer-based Surface-Plasmon-Polariton Stripe Waveguides at Telecommunication Wavelengths,” Applied Physics Letters,  82, 668–670 (2003)
[Crossref]

Piehler, J

Prieto, F

F Prieto, Sepúlveda, A Calle, A Llobera, C Domínguez, A Abad, A Montoya, and L M Lechuga, “An Integrated Optical Interferometric Nanodevice based on Silicon Technology for Biosensor Applications,” Nanotechnology,  14, 907–912 (2003)
[Crossref]

Salakhutdinov, I

T Nikolajsen, K Leosson, I Salakhutdinov, and S Bozhevolnyi, “Polymer-based Surface-Plasmon-Polariton Stripe Waveguides at Telecommunication Wavelengths,” Applied Physics Letters,  82, 668–670 (2003)
[Crossref]

Scherer, A

Schröfel, J

J Dostálek, J Čtyrocký, J Homola, E Brynda, M Skalský, P Nekvindová, J Špiriková, J Škvor, and J Schröfel, “Surface Plasmon Resonance Biosensor based on Integrated Optical Waveguide,” Sens. Actuators B,  76, 8 – 12 (2001)
[Crossref]

Sepúlveda,

F Prieto, Sepúlveda, A Calle, A Llobera, C Domínguez, A Abad, A Montoya, and L M Lechuga, “An Integrated Optical Interferometric Nanodevice based on Silicon Technology for Biosensor Applications,” Nanotechnology,  14, 907–912 (2003)
[Crossref]

Sinclair, S

J Homola, S Sinclair, and G Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Sens. Actuators B,  54, 3–15 (1999)
[Crossref]

Skalský, M

J Dostálek, J Čtyrocký, J Homola, E Brynda, M Skalský, P Nekvindová, J Špiriková, J Škvor, and J Schröfel, “Surface Plasmon Resonance Biosensor based on Integrated Optical Waveguide,” Sens. Actuators B,  76, 8 – 12 (2001)
[Crossref]

J Homola, J Čtyrocký, M Skalský, J Hradilová, and P Kolářová, “A Surface Plasmon Resonance Based Integrated Optical Sensor,” Sens. Actuators B,  38–39, 286 – 290 (1997)
[Crossref]

Škvor, J

J Dostálek, J Čtyrocký, J Homola, E Brynda, M Skalský, P Nekvindová, J Špiriková, J Škvor, and J Schröfel, “Surface Plasmon Resonance Biosensor based on Integrated Optical Waveguide,” Sens. Actuators B,  76, 8 – 12 (2001)
[Crossref]

Špiriková, J

J Dostálek, J Čtyrocký, J Homola, E Brynda, M Skalský, P Nekvindová, J Špiriková, J Škvor, and J Schröfel, “Surface Plasmon Resonance Biosensor based on Integrated Optical Waveguide,” Sens. Actuators B,  76, 8 – 12 (2001)
[Crossref]

Taillaert, D

W Bogaerts, R Baets, P Dumon, V Wiaux, S Beckx, D Taillaert, B Luyssaert, J Van Campenhout, P Bienstman, and D Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol.,  23(1), 401–412 (2005)
[Crossref]

Thourhout, D Van

W Bogaerts, R Baets, P Dumon, V Wiaux, S Beckx, D Taillaert, B Luyssaert, J Van Campenhout, P Bienstman, and D Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol.,  23(1), 401–412 (2005)
[Crossref]

Usievich, B

J. Čtyrocký, J Homola, PV Lambeck, S Musa, HJWM Hoekstra, RD Harris, JS Wilkinson, B Usievich, and NM Lyn-din, “Theory and Modelling of Optical Waveguide Sensors Utilising Surface Plasmon Resonance,” Sens. Actuators B,  54, 66 – 73 (1999)
[Crossref]

Walker, C

Wiaux, V

W Bogaerts, R Baets, P Dumon, V Wiaux, S Beckx, D Taillaert, B Luyssaert, J Van Campenhout, P Bienstman, and D Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol.,  23(1), 401–412 (2005)
[Crossref]

Wilkinson, J

Wilkinson, JS

J. Čtyrocký, J Homola, PV Lambeck, S Musa, HJWM Hoekstra, RD Harris, JS Wilkinson, B Usievich, and NM Lyn-din, “Theory and Modelling of Optical Waveguide Sensors Utilising Surface Plasmon Resonance,” Sens. Actuators B,  54, 66 – 73 (1999)
[Crossref]

Rd Harris and JS Wilkinson, “Waveguide Surface Plasmon Resonance Sensors,” Sens. Actuators B,  29, 261 – 267 (1995)
[Crossref]

Anal. Bioanan. Chem. (1)

J Homola, “Present and Future of Surface Plasmon Resonance Biosensors,” Anal. Bioanan. Chem.,  377, 528–539 (2003)
[Crossref]

Applied Optics (1)

FJ Bueno, O Esteban, N Díaz-Herrara, MC Navarrete, and A González-Cano, “Sensing Properties of Asymmetric Double-Layer-Covered Tapered Fibers,” Applied Optics,  43, 1615–1620 (2004)
[Crossref] [PubMed]

Applied Physics Letters (1)

T Nikolajsen, K Leosson, I Salakhutdinov, and S Bozhevolnyi, “Polymer-based Surface-Plasmon-Polariton Stripe Waveguides at Telecommunication Wavelengths,” Applied Physics Letters,  82, 668–670 (2003)
[Crossref]

J. Lightwave Technol. (2)

W Bogaerts, R Baets, P Dumon, V Wiaux, S Beckx, D Taillaert, B Luyssaert, J Van Campenhout, P Bienstman, and D Van Thourhout, “Nanophotonic Waveguides in Silicon-on-Insulator Fabricated with CMOS Technology,” J. Lightwave Technol.,  23(1), 401–412 (2005)
[Crossref]

B Luff, J Wilkinson, J Piehler, U Hollenbach, J Ingenhoff, and N Fabricius, “Integrated Optical Mach-Zehnder Biosensor,” J. Lightwave Technol.,  16, 583–592 (1998)
[Crossref]

Nanotechnology (1)

F Prieto, Sepúlveda, A Calle, A Llobera, C Domínguez, A Abad, A Montoya, and L M Lechuga, “An Integrated Optical Interferometric Nanodevice based on Silicon Technology for Biosensor Applications,” Nanotechnology,  14, 907–912 (2003)
[Crossref]

Opt. Express (1)

Opt. Quantum Electron (1)

P Bienstman and R Baets, “Optical Modelling of Photonic Crystals and VCSELs using Eigenmode Expansion and Perfectly Matched Layers,” Opt. Quantum Electron 33, 327–341 (2001)
[Crossref]

OWTNM 2006 Proceedings (1)

P Debackere, P Bienstman, and R Baets, “Improved ASR Convergence for the Simulation of Surface Plasmon Waveguide Modes,” OWTNM 2006 Proceedings, 14 (2006)

Sens. Actuators B (5)

J Homola, S Sinclair, and G Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Sens. Actuators B,  54, 3–15 (1999)
[Crossref]

J. Čtyrocký, J Homola, PV Lambeck, S Musa, HJWM Hoekstra, RD Harris, JS Wilkinson, B Usievich, and NM Lyn-din, “Theory and Modelling of Optical Waveguide Sensors Utilising Surface Plasmon Resonance,” Sens. Actuators B,  54, 66 – 73 (1999)
[Crossref]

Rd Harris and JS Wilkinson, “Waveguide Surface Plasmon Resonance Sensors,” Sens. Actuators B,  29, 261 – 267 (1995)
[Crossref]

J Homola, J Čtyrocký, M Skalský, J Hradilová, and P Kolářová, “A Surface Plasmon Resonance Based Integrated Optical Sensor,” Sens. Actuators B,  38–39, 286 – 290 (1997)
[Crossref]

J Dostálek, J Čtyrocký, J Homola, E Brynda, M Skalský, P Nekvindová, J Špiriková, J Škvor, and J Schröfel, “Surface Plasmon Resonance Biosensor based on Integrated Optical Waveguide,” Sens. Actuators B,  76, 8 – 12 (2001)
[Crossref]

Other (3)

Handbook of Optical Constants of Solids, edited by E. Palik, Academic Press New York (1985)

CAMFR, http://sourceforge.org/projects/CAMFR

P Debackere, P Bienstman, and R Baets, “Improved ASR Convergence for the Simulation of Surface Plasmon Waveguide Modes,” to appear in special issue of Optical and Quantum Electronics on Optical Waveguide Theory and Numerical Modeling (2006)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematical setup of the proposed structure, all dimensions in μm

Fig. 2.
Fig. 2.

Dispersion of the effective indices of the guided modes as a function of the waveguide thickness. The presence of the gold layer on top of the waveguide shifts the effective index of the index-guided mode to lower values. For a waveguide thickness of 230 nm the effective index of this mode is smaller than the refractive index of SiO 2 so that this mode starts to radiate into the silica. For thicknesses below 230 nm the gold-clad Si waveguide has no index-guided modes.

Fig. 3.
Fig. 3.

Coupling loss to surface plasmon modes as a function of the waveguide thickness. The input waveguide has a thickness of 220 nm, the thickness of the Si layer supporting the gold layer varies from 220 nm (Si layer is equally thick as the Si layer in the input waveguide) to 0 nm (Au layer is on top of the SiO 2 layer).

Fig. 4.
Fig. 4.

Transmission of the structure depicted in Fig. 1. The length of the structure is 10 μm

Fig. 5.
Fig. 5.

Transmission of the structure as a function of the wavelength

Fig. 6.
Fig. 6.

Simulation results for the optimized structure

Fig. 7.
Fig. 7.

Shift of the wavelength for which transmission is minimal as a function of the refractive index of the sample medium

Fig. 8.
Fig. 8.

Shift of the wavelength for which transmission is minimal as a function of the thickness of the absorbed layer

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I [ 1 + V cos ( Δ ϕ ) ]
( ϕ T ( intern , in ) + ϕ prop , intern + ϕ T ( in , intern ) )
( ϕ T ( extern , in ) + ϕ prop , extern + ϕ T ( in , extern ) ) π ,
L = 1 k external k i internal 1 log e log ( T ( intern , in ) 2 T ( extern , in ) 2 ) ,

Metrics