Abstract

The objective of this paper is the detailed study of polarization conversion in deformed high index contrast (HIC) waveguides. The type of deformation considered here is the slanted sidewalls of buried channel waveguides. Polarization conversion of HIC waveguides are investigated for possible core refractive indices ranging from 2 (SiNx) to 3.5 (Si), by using numerical schemes based on the finite-element and beam propagation methods. The numerical results show that polarization conversion can be greatly magnified in HIC channel waveguides. For example, in Si-wire waveguides, complete polarization conversions can occur within just tens of micrometers.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
    [CrossRef]
  2. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
    [CrossRef]
  3. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001).
    [CrossRef]
  4. A. Sakai, G. Hara, and T. Baba, "Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate," Jpn. J. Appl. Phys. 40, L383-L385 (2001).
    [CrossRef]
  5. Y. A. Vlasov and S. J. McNab, "Losses in single-mode silicon-on-insulator strip waveguides and bends," Opt. Express 12, 1622-1631 (2004).
    [CrossRef] [PubMed]
  6. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
    [CrossRef]
  7. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides," Electron. Lett. 41, 801-802 (2005).
    [CrossRef]
  8. R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005).
    [CrossRef] [PubMed]
  9. G. R. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, "Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits," Opt. Express 13, 10102-10108 (2005).
    [CrossRef] [PubMed]
  10. C. Li, N. Ma, and A. W. Poon, "Waveguide-coupled octagonal microdisk channel add-drop filters," Opt. Lett. 29, 471-473 (2004).
    [CrossRef] [PubMed]
  11. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutii, A. Lui, and L. Pavesi, "Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line," J. Lightwave Technol. 22, 1734-1740 (2004).
    [CrossRef]
  12. M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutii, and A. Lui, "Propagation losses of silicon nitride waveguides in the near-infrared range," Appl. Phys. Lett. 86, 121111 (2005).
    [CrossRef]
  13. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, "Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express 13, 10109-10114 (2005).
    [CrossRef] [PubMed]
  14. N. Ibaraki and H. Fritzsche, "Properties of amorphous semiconducting a-Si:H/a-SiNx:H multilayer films and of a-SiNx:H alloys," Phys. Rev. B 30, 5791-5799 (1984).
    [CrossRef]
  15. C.-C. Lee, H.-L. Chen, J.-C. Hsu, and C.-L. Tien, "Interference coatings based on synthesized silicon nitride," Appl. Opt. 38, 2078-2082 (1999).
    [CrossRef]
  16. K. Takada and S. Mitachi, "Polarization crosstalk dependence on length in silica-based waveguides measured by using optical low coherence interference," J. Lightwave Technol. 16, 1413-1422 (1998).
    [CrossRef]
  17. B. M. A. Rahman, N. Somasiri, and M. Windmann, "Polarization crosstalk in high index contrast planar silica waveguides," IEEE Photon. Technol. Lett. 14, 1109-1111 (2002).
    [CrossRef]
  18. N. Somasiri and B. M. A. Rahman, "Polarization crosstalk in high index contrast planar silica waveguides with slanted sidewalls," J. Lightwave Technol.,  21, 54-60 (2003).
    [CrossRef]
  19. S. S. A. Obayya, S. Haxha, B. M. A. Rahman, and K. T. V. Grattan, "Numerical modeling of polarization conversion in semiconductor electro-optic modulators," Appl. Opt. 44, 1032-1038 (2005).
    [CrossRef] [PubMed]
  20. E. D. Finlayson, J. M. Heaton, B. M. A. Rahman, S. S. A. Obayya, "Polarization conversion in passive deep-etched GaAs/AlGaAs waveguides," J. Lightwave Technol. 24, 1425-1432 (2006).
    [CrossRef]
  21. K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
    [CrossRef]
  22. K. Saitoh and M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," J. Lightwave Technol. 19, 405-413 (2001).
    [CrossRef]
  23. V. P. Tzolov and M. Fontaine, "A passive polarization converter free of longitudinally-periodic structure," Opt. Commun. 127, 7-13 (1996).
    [CrossRef]
  24. M. Fontaine, "Theoretical approach to investigating cross-phase modulation phenomena in waveguides with arbitrary cross sections," J. Opt. Soc. Am. B 14, 1444-1452 (1997).
    [CrossRef]
  25. C. K. Madsen, "Optical all-pass filters for polarization mode dispersion compensation," Opt. Lett. 25, 878-880 (2000).
    [CrossRef]
  26. D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
    [CrossRef]
  27. M. R. Watts and H. A. Haus, "Integrated mode-evolution-based polarization rotators," Opt. Lett. 30, 138-140 (2005).
    [CrossRef] [PubMed]

2006

2005

M. R. Watts and H. A. Haus, "Integrated mode-evolution-based polarization rotators," Opt. Lett. 30, 138-140 (2005).
[CrossRef] [PubMed]

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides," Electron. Lett. 41, 801-802 (2005).
[CrossRef]

R. L. Espinola, J. I. Dadap, R. M. Osgood, Jr., S. J. McNab, and Y. A. Vlasov, "C-band wavelength conversion in silicon photonic wire waveguides," Opt. Express 13, 4341-4349 (2005).
[CrossRef] [PubMed]

G. R. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, "Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits," Opt. Express 13, 10102-10108 (2005).
[CrossRef] [PubMed]

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutii, and A. Lui, "Propagation losses of silicon nitride waveguides in the near-infrared range," Appl. Phys. Lett. 86, 121111 (2005).
[CrossRef]

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, "Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides," Opt. Express 13, 10109-10114 (2005).
[CrossRef] [PubMed]

S. S. A. Obayya, S. Haxha, B. M. A. Rahman, and K. T. V. Grattan, "Numerical modeling of polarization conversion in semiconductor electro-optic modulators," Appl. Opt. 44, 1032-1038 (2005).
[CrossRef] [PubMed]

2004

2003

N. Somasiri and B. M. A. Rahman, "Polarization crosstalk in high index contrast planar silica waveguides with slanted sidewalls," J. Lightwave Technol.,  21, 54-60 (2003).
[CrossRef]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

2002

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

B. M. A. Rahman, N. Somasiri, and M. Windmann, "Polarization crosstalk in high index contrast planar silica waveguides," IEEE Photon. Technol. Lett. 14, 1109-1111 (2002).
[CrossRef]

2001

2000

1999

1998

K. Takada and S. Mitachi, "Polarization crosstalk dependence on length in silica-based waveguides measured by using optical low coherence interference," J. Lightwave Technol. 16, 1413-1422 (1998).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

1997

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

M. Fontaine, "Theoretical approach to investigating cross-phase modulation phenomena in waveguides with arbitrary cross sections," J. Opt. Soc. Am. B 14, 1444-1452 (1997).
[CrossRef]

1996

V. P. Tzolov and M. Fontaine, "A passive polarization converter free of longitudinally-periodic structure," Opt. Commun. 127, 7-13 (1996).
[CrossRef]

1984

N. Ibaraki and H. Fritzsche, "Properties of amorphous semiconducting a-Si:H/a-SiNx:H multilayer films and of a-SiNx:H alloys," Phys. Rev. B 30, 5791-5799 (1984).
[CrossRef]

Arakawa, Y.

Baba, T.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides," Electron. Lett. 41, 801-802 (2005).
[CrossRef]

A. Sakai, G. Hara, and T. Baba, "Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate," Jpn. J. Appl. Phys. 40, L383-L385 (2001).
[CrossRef]

Baets, R.

G. R. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, "Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits," Opt. Express 13, 10102-10108 (2005).
[CrossRef] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Bellutii, P.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutii, and A. Lui, "Propagation losses of silicon nitride waveguides in the near-infrared range," Appl. Phys. Lett. 86, 121111 (2005).
[CrossRef]

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutii, A. Lui, and L. Pavesi, "Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line," J. Lightwave Technol. 22, 1734-1740 (2004).
[CrossRef]

Bogaerts, W.

Borel, P. I.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Brouckaert, J.

Cerrina, F.

Chen, H.-L.

Chong, H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Chu, S. T.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

Chu, T.

Crivellari, M.

Dadap, J. I.

Daldosso, N.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutii, and A. Lui, "Propagation losses of silicon nitride waveguides in the near-infrared range," Appl. Phys. Lett. 86, 121111 (2005).
[CrossRef]

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutii, A. Lui, and L. Pavesi, "Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line," J. Lightwave Technol. 22, 1734-1740 (2004).
[CrossRef]

De La Rue, R. M.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Dumon, P.

Espinola, R. L.

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Finlayson, E. D.

Fontaine, M.

M. Fontaine, "Theoretical approach to investigating cross-phase modulation phenomena in waveguides with arbitrary cross sections," J. Opt. Soc. Am. B 14, 1444-1452 (1997).
[CrossRef]

V. P. Tzolov and M. Fontaine, "A passive polarization converter free of longitudinally-periodic structure," Opt. Commun. 127, 7-13 (1996).
[CrossRef]

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Frandsen, L. H.

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Fritzsche, H.

N. Ibaraki and H. Fritzsche, "Properties of amorphous semiconducting a-Si:H/a-SiNx:H multilayer films and of a-SiNx:H alloys," Phys. Rev. B 30, 5791-5799 (1984).
[CrossRef]

Fukuda, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Girardini, M.

Grattan, K. T. V.

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

Hara, G.

A. Sakai, G. Hara, and T. Baba, "Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate," Jpn. J. Appl. Phys. 40, L383-L385 (2001).
[CrossRef]

Haus, H. A.

M. R. Watts and H. A. Haus, "Integrated mode-evolution-based polarization rotators," Opt. Lett. 30, 138-140 (2005).
[CrossRef] [PubMed]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

Haxha, S.

Heaton, J. M.

Hsu, J.-C.

Ibaraki, N.

N. Ibaraki and H. Fritzsche, "Properties of amorphous semiconducting a-Si:H/a-SiNx:H multilayer films and of a-SiNx:H alloys," Phys. Rev. B 30, 5791-5799 (1984).
[CrossRef]

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Ishida, S.

Itabashi, S.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Joannopoulos, J. D.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Kimerling, L. C.

K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, "Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction," Opt. Lett. 26, 1888-1890 (2001).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Kompocholis, C.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutii, and A. Lui, "Propagation losses of silicon nitride waveguides in the near-infrared range," Appl. Phys. Lett. 86, 121111 (2005).
[CrossRef]

Koshiba, M.

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

K. Saitoh and M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," J. Lightwave Technol. 19, 405-413 (2001).
[CrossRef]

Lee, C.-C.

Lee, K. K.

Li, C.

Lim, D. R.

Little, B. E.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

Lui, A.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutii, and A. Lui, "Propagation losses of silicon nitride waveguides in the near-infrared range," Appl. Phys. Lett. 86, 121111 (2005).
[CrossRef]

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutii, A. Lui, and L. Pavesi, "Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line," J. Lightwave Technol. 22, 1734-1740 (2004).
[CrossRef]

Ma, N.

Madsen, C. K.

McNab, S. J.

Melchiorri, M.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutii, and A. Lui, "Propagation losses of silicon nitride waveguides in the near-infrared range," Appl. Phys. Lett. 86, 121111 (2005).
[CrossRef]

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutii, A. Lui, and L. Pavesi, "Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line," J. Lightwave Technol. 22, 1734-1740 (2004).
[CrossRef]

Mitachi, S.

Morita, H.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Motegi, A.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides," Electron. Lett. 41, 801-802 (2005).
[CrossRef]

Nötzel, R.

Obayya, S. S. A.

Ohno, F.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides," Electron. Lett. 41, 801-802 (2005).
[CrossRef]

Osgood, R. M.

Pavesi, L.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutii, and A. Lui, "Propagation losses of silicon nitride waveguides in the near-infrared range," Appl. Phys. Lett. 86, 121111 (2005).
[CrossRef]

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutii, A. Lui, and L. Pavesi, "Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line," J. Lightwave Technol. 22, 1734-1740 (2004).
[CrossRef]

Poon, A. W.

Pucker, G.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutii, and A. Lui, "Propagation losses of silicon nitride waveguides in the near-infrared range," Appl. Phys. Lett. 86, 121111 (2005).
[CrossRef]

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutii, A. Lui, and L. Pavesi, "Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line," J. Lightwave Technol. 22, 1734-1740 (2004).
[CrossRef]

Rahman, B. M. A.

Riboli, F.

Roelkens, G. R.

Saitoh, K.

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

K. Saitoh and M. Koshiba, "Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides," J. Lightwave Technol. 19, 405-413 (2001).
[CrossRef]

Sakai, A.

A. Sakai, G. Hara, and T. Baba, "Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate," Jpn. J. Appl. Phys. 40, L383-L385 (2001).
[CrossRef]

Sasaki, K.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides," Electron. Lett. 41, 801-802 (2005).
[CrossRef]

Sbrana, F.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutii, and A. Lui, "Propagation losses of silicon nitride waveguides in the near-infrared range," Appl. Phys. Lett. 86, 121111 (2005).
[CrossRef]

Shin, J.

Shoji, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Smit, M.

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Somasiri, N.

N. Somasiri and B. M. A. Rahman, "Polarization crosstalk in high index contrast planar silica waveguides with slanted sidewalls," J. Lightwave Technol.,  21, 54-60 (2003).
[CrossRef]

B. M. A. Rahman, N. Somasiri, and M. Windmann, "Polarization crosstalk in high index contrast planar silica waveguides," IEEE Photon. Technol. Lett. 14, 1109-1111 (2002).
[CrossRef]

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Taillaert, D.

G. R. Roelkens, J. Brouckaert, D. Taillaert, P. Dumon, W. Bogaerts, D. Van Thourhout, R. Baets, R. Nötzel, and M. Smit, "Integration of InP/InGaAsP photodetectors onto silicon-on-insulator waveguide circuits," Opt. Express 13, 10102-10108 (2005).
[CrossRef] [PubMed]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

Takada, K.

Takahashi, J.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Takahashi, M.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Tamechika, E.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Tien, C.-L.

Tsuchizawa, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Tzolov, V. P.

V. P. Tzolov and M. Fontaine, "A passive polarization converter free of longitudinally-periodic structure," Opt. Commun. 127, 7-13 (1996).
[CrossRef]

Van Thourhout, D.

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Vlasov, Y. A.

Watanabe, T.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Watts, M. R.

Windmann, M.

B. M. A. Rahman, N. Somasiri, and M. Windmann, "Polarization crosstalk in high index contrast planar silica waveguides," IEEE Photon. Technol. Lett. 14, 1109-1111 (2002).
[CrossRef]

Yamada, H.

Yamada, K.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

M. Melchiorri, N. Daldosso, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, P. Bellutii, and A. Lui, "Propagation losses of silicon nitride waveguides in the near-infrared range," Appl. Phys. Lett. 86, 121111 (2005).
[CrossRef]

Electron. Lett.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, "Arrayed waveguide grating of 70×60 μm2 size based on Si photonic wire waveguides," Electron. Lett. 41, 801-802 (2005).
[CrossRef]

IEEE J. Quantum Electron.

K. Saitoh and M. Koshiba, "Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers," IEEE J. Quantum Electron. 38, 927-933 (2002).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron.

T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita, "Microphotonics devices based on silicon microfabrication technology," IEEE J. Sel. Topics Quantum Electron. 11, 232-240 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

B. M. A. Rahman, N. Somasiri, and M. Windmann, "Polarization crosstalk in high index contrast planar silica waveguides," IEEE Photon. Technol. Lett. 14, 1109-1111 (2002).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, "Ultra-compact Si-SiO2 microring resonator optical channel dropping filters," IEEE Photon. Technol. Lett. 10, 549-551 (1998).
[CrossRef]

D. Taillaert, H. Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact two-dimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15, 1249-1251 (2003).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

A. Sakai, G. Hara, and T. Baba, "Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate," Jpn. J. Appl. Phys. 40, L383-L385 (2001).
[CrossRef]

Nature

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, "Photonic-bandgap microcavities in optical waveguides," Nature 390, 143-145 (1997).
[CrossRef]

Opt. Commun.

V. P. Tzolov and M. Fontaine, "A passive polarization converter free of longitudinally-periodic structure," Opt. Commun. 127, 7-13 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

N. Ibaraki and H. Fritzsche, "Properties of amorphous semiconducting a-Si:H/a-SiNx:H multilayer films and of a-SiNx:H alloys," Phys. Rev. B 30, 5791-5799 (1984).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Cross-sectional view of a HIC waveguide with slanted sidewalls, where d, a, and θ are the waveguide height, width, and slant angle, respectively. n core and n clad denote the refractive indices of the core and cladding, respectively.

Fig. 2.
Fig. 2.

Normalized cutoff wavelength λ c /a of the square channel waveguide as a function of refractive index of the core, n core.

Fig. 3.
Fig. 3.

Rotation parameter R as a function of waveguide width a for (a) n core = 3.5 and d = 300 nm, (b) n core = 3.0 and d = 360 nm, (c) n core = 2.5 and d = 470 nm, and (d) n core = 2.0 and d = 700 nm.

Fig. 4.
Fig. 4.

Vector magnetic field distributions of the two fundamental modes in the Si-wire with n core = 3.5 and d = 300 nm. (a), (b) for a = 280 nm and θ = 0°; (c), (d) for a = 280 nm and θ = 1°; (e), (f) for a = 300 nm and θ = 5°.

Fig. 5.
Fig. 5.

Propagation constants in the Si-wire waveguide (n core = 3.5) as a function of waveguide width a.

Fig. 6.
Fig. 6.

Half-beat length L π as a function of waveguide width a for (a) n core = 3.5 and d = 300 nm, (b) n core = 3.0 and d = 360 nm, (c) n core = 2.5 and d = 470 nm, and (d) n core = 2.0 and d = 700 nm.

Fig. 7.
Fig. 7.

Magnetic field distributions of the horizontal (x) component for (a) n core = 3.5, a = d = 300 nm, and θ = 1° and for (b) n core = 2.0, a = d = 700 nm, and θ = 1°.

Fig. 8.
Fig. 8.

Normalized field profiles in the deformed square waveguides (θ = 1°) on the waveguide center, y = 0, for n core = 3.5 (a = d = 300 nm), n core = 3.0 (a = d = 360 nm), n core = 2.5 (a = d = 470 nm), and n core = 2.0 (a = d = 700 nm).

Fig. 9.
Fig. 9.

Polarization conversions in Si-wire waveguides as a function of propagation distance with n core = 3.5 and d = 300 nm for (a) θ = 1° and (b) θ = 5°.

Fig. 10.
Fig. 10.

(a) |Ex | and (b) |Ey | distributions of slanted Si-wire waveguides with n core = 3.5, a = 300 nm, and θ = 5° in the xz plane at the center of the waveguide in the y direction.

Fig. 11.
Fig. 11.

Polarization conversions in the HIC waveguides as a function of propagation distance with n core = 3.0 and d = 360 nm for (a) θ = 1° and (b) θ = 5°.

Fig. 12.
Fig. 12.

Polarization conversions in the HIC waveguides as a function of propagation distance with n core = 2.5 and d = 470 nm for (a) θ = 1° and (b) θ = 5°.

Fig. 13.
Fig. 13.

Polarization conversions in the HIC waveguides as a function of propagation distance with n core = 2.0 and d = 700 nm for (a) θ = 1° and (b) θ = 5°.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R = ∫∫ n ( x , y ) 2 E y ( x , y ) 2 dxdy ∫∫ n ( x , y ) 2 E x ( x , y ) 2 dxdy
L π = π β 1 β 2
P c ( z ) = ∫∫ ( E ( z ) × H 0 , TM * ) · i z dxdy ∫∫ ( E 0,TM × H 0 , TM * ) · i z dxdy 2 ∫∫ ( E 0,TM × H 0 , TM * ) · i z dxdy ∫∫ ( E ( 0 ) × H 0 , TE * ) · i z dxdy ∫∫ ( E 0 , TE × H 0 , TE * ) · i z dxdy 2 ∫∫ ( E 0 , TE × H 0 , TE * ) · i z dxdy

Metrics