Abstract

We report a novel and fairly simple optical technique for sizing and measuring the evaporation rates of aqueous solution aerosol particles. A ball-lens LED with high degree of spatial coherence is used as a “white” light source to excite the Morphology Dependent Resonance (MDR) spectra of a microdroplet levitated in an electrodynamic balance (EDB). The spectra are recorded by an Optical Multichannel Analyzer. We show that very low vapor pressures of substances in aqueous solution particles can be measured for different temperatures and relative humidities (hence for different concentrations). As an application we measured the vapor pressure and the enthalpy of vaporization of aqueous malonic acid, a substance of interest for atmospheric science.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. IPCC Third Assessment Report, "The Scientific Basis," chapters 4 and 5, http://www.grida.no/climate/ipcc tar.
  2. B. Zobrist, C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter, "Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect," Atmos. Chem. Phys. Discuss. 6, 3571-3609 (2006).
    [CrossRef]
  3. D. J. Rader, and P. H. McMurry, "Application of the Tandem differential mobility analyzer to studies of droplet growth or evaporation," J. Aerosol Sci. 17, 771 (1986).
    [CrossRef]
  4. P. F. Paradis, T. Ishikawa, and S. Yoda, "Non-contact measurement technique of the vapor pressure of liquid and high temperature solid materials," Eur. Phys. J. Appl. Phys. 22, 97-101 (2003).
    [CrossRef]
  5. G. O. Rubel, "Evaporation of single aerosol binary oil droplets," J. Colloid Interface Sci. 85, 549-555 (1982).
    [CrossRef]
  6. A. K. Ray, E. J. Davis, and P. Ravindran, "Determination of ultra-low vapor pressures by submicron droplet evaporation," J. Chem. Phys. 71, 582- 587 (1979).
    [CrossRef]
  7. A. Ashkin, and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric spheres," Phys. Rev. Lett. 38, p.1351 (1977).
    [CrossRef]
  8. A. Ashkin, and J. M. Dziedzic, "Observation of optical resonances of dielectric spheres by light scattering," Appl. Opt. 20, 1803-1814 (1981).
    [CrossRef] [PubMed]
  9. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonances in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
    [CrossRef]
  10. R. Thurn, and W. Kiefer, "Observations of structural resonances in the Raman spectra of optically levitated dielectric microspheres," J. Raman Spectrosc. 15, 411-413 (1984).
    [CrossRef]
  11. R. Thurn, and W. Kiefer, "Raman-Microsampling technique applying optical levitation by radiation pressure," Appl. Spectrosc. 38, 78-83 (1984).
    [CrossRef]
  12. F. Weritz, A. Simon, and T. Leisner, "Infrared microspectroscopy on single levitated droplets," Environ. Sci. Pollut. Res. 4, 92-99 (2002).
  13. C. B. Richardson, R. L. Hightower, and A. L. Pigg, "Optical measurement of the evaporation of sulfuric acid droplets," Appl. Opt. 25, 1226-1229 (1986).
    [CrossRef] [PubMed]
  14. J. L. Huckaby, A. K. Ray, and B. Das, "Determination of size, refractive index, and dispersion of single droplets from wavelength-dependent scattering spectra," Appl. Opt. 33, 7112-7125 (1994).
    [CrossRef] [PubMed]
  15. J. F. Widmann, C. M. Heusmann, and E. J. Davis, "The effect of a polymeric additive on the evaporation of organic aerocolloidal droplets," Colloid. Polym. Sci. 276, 197-205 (1998).
    [CrossRef]
  16. H. C. van de Hulst, "Light Scattering by Small Particles," (Dover, New York, 1981).
  17. P. Chýlek, "Partial wave resonances and ripple structure in Mie normalized extinction cross section," J. Opt. Soc. Am. 66, 3, 285-287 (1976).
    [CrossRef]
  18. J. R. Probert-Jones, "Resonance component of backscattering by large dielectric spheres," J. Opt. Soc. Am. A 1, 822-830 (1984).
    [CrossRef]
  19. P. Chýlek, "Resonance structure of Mie scattering: distance between resonances," J. Opt. Soc. Am. A 7, (1990)
    [CrossRef]
  20. C. E. Lund Myhre and C. J. Nielsen, "Optical properties in the UV and visible spectral region of organic acids relevant to tropospheric aerosols," Atmos. Chem. Phys. 4, 1759-1769 (2004).
    [CrossRef]
  21. W. C. Hinds, "Aerosol Technology, 2nd edition," (John Wiley & Sons Inc., New York, 1999).
  22. J. C. Maxwell, in "Encyclopedia Britannica," Vol. 2, p.82 (1877).
  23. N. A. Fuchs, A.G. Sutugin, "In Topics in Current Aerosol Research" (Hidy, G. N., Brock, J. R., Eds.; Pergamon Press: New York, 1971).
  24. U. K. Krieger, C. A. Colberg, U. Weers, T. Koop, Th. Peter, "Supercooling of single H2SO4/H2O aerosols to 158 K: no evidence for the occurrence of the octahydrate," Geophys. Res. Lett. 27, 2097-2100 (2000).
    [CrossRef]
  25. C. A. Colberg, "Morphological investigations of single levitated H2SO4/NH3/H2O aerosol particles during deliquescence/efflorescence experiments," J. Phys. Chem. A 108, 2700-2709 (2004).
    [CrossRef]
  26. E. J. Davis, "The double-ring electrodynamic balance for microparticle characterization," Rev. Sci. Instrum. 61, 1281-1288 (1990).
    [CrossRef]
  27. C. B. Richardson, "A stabilizer for single microscopic particles in a quadrupole trap," Rev. Sci. Instrum. 61, 1334-1335 (1990).
    [CrossRef]
  28. E. J. Davis, "Light-scattering and aerodynamic size measurements for homogeneous and inhomogeneous microspheres," Langmuir 1, 373-379 (1985).
    [CrossRef]
  29. C. Peng, M. N. Chan and C. K. Chan, The hygroscopic properties of dicarboxylic and multifunctional acids: measurements and UNIFAC predictions, Env. Sci. Tech. 35, 4495-4501 (2001).
    [CrossRef]
  30. M. Bilde, B. Svenningsson, J. Mønster, and T. Rosenørn, "Even-odd alternation of evaporation rates and vapor pressures of C3-C9 dicarboxylic acid aerosols," Env. Sci. Tech. 37, 1371-1378 (2003).
    [CrossRef]
  31. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, "Transport Phenomena," (Wiley, NewYork, 1960).
  32. J. Mønster, T. Rosenørn, B. Svenningsson, and M. Bilde, "Evaporation of methyl- and dimethyl-substituted malonic, succinic, glutaric and adipic acid particles at ambient temperatures," J. Aerosol Sci. 35, 1453-1465 (2004).
  33. A. K. Ray and S. Venkatraman, "Binary activity coefficients from microdroplet evaporation," AICHE J. 41, 938-947 (1995).
    [CrossRef]

2006 (1)

B. Zobrist, C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter, "Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect," Atmos. Chem. Phys. Discuss. 6, 3571-3609 (2006).
[CrossRef]

2004 (3)

C. E. Lund Myhre and C. J. Nielsen, "Optical properties in the UV and visible spectral region of organic acids relevant to tropospheric aerosols," Atmos. Chem. Phys. 4, 1759-1769 (2004).
[CrossRef]

C. A. Colberg, "Morphological investigations of single levitated H2SO4/NH3/H2O aerosol particles during deliquescence/efflorescence experiments," J. Phys. Chem. A 108, 2700-2709 (2004).
[CrossRef]

J. Mønster, T. Rosenørn, B. Svenningsson, and M. Bilde, "Evaporation of methyl- and dimethyl-substituted malonic, succinic, glutaric and adipic acid particles at ambient temperatures," J. Aerosol Sci. 35, 1453-1465 (2004).

2003 (2)

M. Bilde, B. Svenningsson, J. Mønster, and T. Rosenørn, "Even-odd alternation of evaporation rates and vapor pressures of C3-C9 dicarboxylic acid aerosols," Env. Sci. Tech. 37, 1371-1378 (2003).
[CrossRef]

P. F. Paradis, T. Ishikawa, and S. Yoda, "Non-contact measurement technique of the vapor pressure of liquid and high temperature solid materials," Eur. Phys. J. Appl. Phys. 22, 97-101 (2003).
[CrossRef]

2002 (1)

F. Weritz, A. Simon, and T. Leisner, "Infrared microspectroscopy on single levitated droplets," Environ. Sci. Pollut. Res. 4, 92-99 (2002).

2001 (1)

C. Peng, M. N. Chan and C. K. Chan, The hygroscopic properties of dicarboxylic and multifunctional acids: measurements and UNIFAC predictions, Env. Sci. Tech. 35, 4495-4501 (2001).
[CrossRef]

2000 (1)

U. K. Krieger, C. A. Colberg, U. Weers, T. Koop, Th. Peter, "Supercooling of single H2SO4/H2O aerosols to 158 K: no evidence for the occurrence of the octahydrate," Geophys. Res. Lett. 27, 2097-2100 (2000).
[CrossRef]

1998 (1)

J. F. Widmann, C. M. Heusmann, and E. J. Davis, "The effect of a polymeric additive on the evaporation of organic aerocolloidal droplets," Colloid. Polym. Sci. 276, 197-205 (1998).
[CrossRef]

1995 (1)

A. K. Ray and S. Venkatraman, "Binary activity coefficients from microdroplet evaporation," AICHE J. 41, 938-947 (1995).
[CrossRef]

1994 (1)

1990 (3)

P. Chýlek, "Resonance structure of Mie scattering: distance between resonances," J. Opt. Soc. Am. A 7, (1990)
[CrossRef]

E. J. Davis, "The double-ring electrodynamic balance for microparticle characterization," Rev. Sci. Instrum. 61, 1281-1288 (1990).
[CrossRef]

C. B. Richardson, "A stabilizer for single microscopic particles in a quadrupole trap," Rev. Sci. Instrum. 61, 1334-1335 (1990).
[CrossRef]

1986 (2)

D. J. Rader, and P. H. McMurry, "Application of the Tandem differential mobility analyzer to studies of droplet growth or evaporation," J. Aerosol Sci. 17, 771 (1986).
[CrossRef]

C. B. Richardson, R. L. Hightower, and A. L. Pigg, "Optical measurement of the evaporation of sulfuric acid droplets," Appl. Opt. 25, 1226-1229 (1986).
[CrossRef] [PubMed]

1985 (1)

E. J. Davis, "Light-scattering and aerodynamic size measurements for homogeneous and inhomogeneous microspheres," Langmuir 1, 373-379 (1985).
[CrossRef]

1984 (3)

1982 (1)

G. O. Rubel, "Evaporation of single aerosol binary oil droplets," J. Colloid Interface Sci. 85, 549-555 (1982).
[CrossRef]

1981 (1)

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonances in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

1979 (1)

A. K. Ray, E. J. Davis, and P. Ravindran, "Determination of ultra-low vapor pressures by submicron droplet evaporation," J. Chem. Phys. 71, 582- 587 (1979).
[CrossRef]

1977 (1)

A. Ashkin, and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric spheres," Phys. Rev. Lett. 38, p.1351 (1977).
[CrossRef]

1976 (1)

Ashkin, A.

A. Ashkin, and J. M. Dziedzic, "Observation of optical resonances of dielectric spheres by light scattering," Appl. Opt. 20, 1803-1814 (1981).
[CrossRef] [PubMed]

A. Ashkin, and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric spheres," Phys. Rev. Lett. 38, p.1351 (1977).
[CrossRef]

Barber, P. W.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonances in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Benner, R. E.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonances in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Bilde, M.

J. Mønster, T. Rosenørn, B. Svenningsson, and M. Bilde, "Evaporation of methyl- and dimethyl-substituted malonic, succinic, glutaric and adipic acid particles at ambient temperatures," J. Aerosol Sci. 35, 1453-1465 (2004).

M. Bilde, B. Svenningsson, J. Mønster, and T. Rosenørn, "Even-odd alternation of evaporation rates and vapor pressures of C3-C9 dicarboxylic acid aerosols," Env. Sci. Tech. 37, 1371-1378 (2003).
[CrossRef]

Chan, C. K.

C. Peng, M. N. Chan and C. K. Chan, The hygroscopic properties of dicarboxylic and multifunctional acids: measurements and UNIFAC predictions, Env. Sci. Tech. 35, 4495-4501 (2001).
[CrossRef]

Chan, M. N.

C. Peng, M. N. Chan and C. K. Chan, The hygroscopic properties of dicarboxylic and multifunctional acids: measurements and UNIFAC predictions, Env. Sci. Tech. 35, 4495-4501 (2001).
[CrossRef]

Chang, R. K.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonances in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Chýlek, P.

P. Chýlek, "Resonance structure of Mie scattering: distance between resonances," J. Opt. Soc. Am. A 7, (1990)
[CrossRef]

P. Chýlek, "Partial wave resonances and ripple structure in Mie normalized extinction cross section," J. Opt. Soc. Am. 66, 3, 285-287 (1976).
[CrossRef]

Colberg, C. A.

C. A. Colberg, "Morphological investigations of single levitated H2SO4/NH3/H2O aerosol particles during deliquescence/efflorescence experiments," J. Phys. Chem. A 108, 2700-2709 (2004).
[CrossRef]

U. K. Krieger, C. A. Colberg, U. Weers, T. Koop, Th. Peter, "Supercooling of single H2SO4/H2O aerosols to 158 K: no evidence for the occurrence of the octahydrate," Geophys. Res. Lett. 27, 2097-2100 (2000).
[CrossRef]

Corti, T.

B. Zobrist, C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter, "Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect," Atmos. Chem. Phys. Discuss. 6, 3571-3609 (2006).
[CrossRef]

Cziczo, D. J.

B. Zobrist, C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter, "Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect," Atmos. Chem. Phys. Discuss. 6, 3571-3609 (2006).
[CrossRef]

Das, B.

Davis, E. J.

J. F. Widmann, C. M. Heusmann, and E. J. Davis, "The effect of a polymeric additive on the evaporation of organic aerocolloidal droplets," Colloid. Polym. Sci. 276, 197-205 (1998).
[CrossRef]

E. J. Davis, "The double-ring electrodynamic balance for microparticle characterization," Rev. Sci. Instrum. 61, 1281-1288 (1990).
[CrossRef]

E. J. Davis, "Light-scattering and aerodynamic size measurements for homogeneous and inhomogeneous microspheres," Langmuir 1, 373-379 (1985).
[CrossRef]

A. K. Ray, E. J. Davis, and P. Ravindran, "Determination of ultra-low vapor pressures by submicron droplet evaporation," J. Chem. Phys. 71, 582- 587 (1979).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, and J. M. Dziedzic, "Observation of optical resonances of dielectric spheres by light scattering," Appl. Opt. 20, 1803-1814 (1981).
[CrossRef] [PubMed]

A. Ashkin, and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric spheres," Phys. Rev. Lett. 38, p.1351 (1977).
[CrossRef]

Fueglistaler, S.

B. Zobrist, C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter, "Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect," Atmos. Chem. Phys. Discuss. 6, 3571-3609 (2006).
[CrossRef]

Heusmann, C. M.

J. F. Widmann, C. M. Heusmann, and E. J. Davis, "The effect of a polymeric additive on the evaporation of organic aerocolloidal droplets," Colloid. Polym. Sci. 276, 197-205 (1998).
[CrossRef]

Hightower, R. L.

Huckaby, J. L.

Hudson, P. K.

B. Zobrist, C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter, "Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect," Atmos. Chem. Phys. Discuss. 6, 3571-3609 (2006).
[CrossRef]

Ishikawa, T.

P. F. Paradis, T. Ishikawa, and S. Yoda, "Non-contact measurement technique of the vapor pressure of liquid and high temperature solid materials," Eur. Phys. J. Appl. Phys. 22, 97-101 (2003).
[CrossRef]

Kiefer, W.

R. Thurn, and W. Kiefer, "Observations of structural resonances in the Raman spectra of optically levitated dielectric microspheres," J. Raman Spectrosc. 15, 411-413 (1984).
[CrossRef]

R. Thurn, and W. Kiefer, "Raman-Microsampling technique applying optical levitation by radiation pressure," Appl. Spectrosc. 38, 78-83 (1984).
[CrossRef]

Koop, T.

B. Zobrist, C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter, "Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect," Atmos. Chem. Phys. Discuss. 6, 3571-3609 (2006).
[CrossRef]

U. K. Krieger, C. A. Colberg, U. Weers, T. Koop, Th. Peter, "Supercooling of single H2SO4/H2O aerosols to 158 K: no evidence for the occurrence of the octahydrate," Geophys. Res. Lett. 27, 2097-2100 (2000).
[CrossRef]

Krieger, U. K.

B. Zobrist, C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter, "Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect," Atmos. Chem. Phys. Discuss. 6, 3571-3609 (2006).
[CrossRef]

U. K. Krieger, C. A. Colberg, U. Weers, T. Koop, Th. Peter, "Supercooling of single H2SO4/H2O aerosols to 158 K: no evidence for the occurrence of the octahydrate," Geophys. Res. Lett. 27, 2097-2100 (2000).
[CrossRef]

Leisner, T.

F. Weritz, A. Simon, and T. Leisner, "Infrared microspectroscopy on single levitated droplets," Environ. Sci. Pollut. Res. 4, 92-99 (2002).

Lohmann, U.

B. Zobrist, C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter, "Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect," Atmos. Chem. Phys. Discuss. 6, 3571-3609 (2006).
[CrossRef]

Lund Myhre, C. E.

C. E. Lund Myhre and C. J. Nielsen, "Optical properties in the UV and visible spectral region of organic acids relevant to tropospheric aerosols," Atmos. Chem. Phys. 4, 1759-1769 (2004).
[CrossRef]

Luo, B. P.

B. Zobrist, C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter, "Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect," Atmos. Chem. Phys. Discuss. 6, 3571-3609 (2006).
[CrossRef]

Marcolli, C.

B. Zobrist, C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter, "Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect," Atmos. Chem. Phys. Discuss. 6, 3571-3609 (2006).
[CrossRef]

McMurry, P. H.

D. J. Rader, and P. H. McMurry, "Application of the Tandem differential mobility analyzer to studies of droplet growth or evaporation," J. Aerosol Sci. 17, 771 (1986).
[CrossRef]

Mønster, J.

J. Mønster, T. Rosenørn, B. Svenningsson, and M. Bilde, "Evaporation of methyl- and dimethyl-substituted malonic, succinic, glutaric and adipic acid particles at ambient temperatures," J. Aerosol Sci. 35, 1453-1465 (2004).

M. Bilde, B. Svenningsson, J. Mønster, and T. Rosenørn, "Even-odd alternation of evaporation rates and vapor pressures of C3-C9 dicarboxylic acid aerosols," Env. Sci. Tech. 37, 1371-1378 (2003).
[CrossRef]

Murphy, D. M.

B. Zobrist, C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter, "Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect," Atmos. Chem. Phys. Discuss. 6, 3571-3609 (2006).
[CrossRef]

Nielsen, C. J.

C. E. Lund Myhre and C. J. Nielsen, "Optical properties in the UV and visible spectral region of organic acids relevant to tropospheric aerosols," Atmos. Chem. Phys. 4, 1759-1769 (2004).
[CrossRef]

Owen, J. F.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonances in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Paradis, P. F.

P. F. Paradis, T. Ishikawa, and S. Yoda, "Non-contact measurement technique of the vapor pressure of liquid and high temperature solid materials," Eur. Phys. J. Appl. Phys. 22, 97-101 (2003).
[CrossRef]

Peng, C.

C. Peng, M. N. Chan and C. K. Chan, The hygroscopic properties of dicarboxylic and multifunctional acids: measurements and UNIFAC predictions, Env. Sci. Tech. 35, 4495-4501 (2001).
[CrossRef]

Peter, T.

B. Zobrist, C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter, "Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect," Atmos. Chem. Phys. Discuss. 6, 3571-3609 (2006).
[CrossRef]

Peter, Th.

U. K. Krieger, C. A. Colberg, U. Weers, T. Koop, Th. Peter, "Supercooling of single H2SO4/H2O aerosols to 158 K: no evidence for the occurrence of the octahydrate," Geophys. Res. Lett. 27, 2097-2100 (2000).
[CrossRef]

Pigg, A. L.

Probert-Jones, J. R.

Rader, D. J.

D. J. Rader, and P. H. McMurry, "Application of the Tandem differential mobility analyzer to studies of droplet growth or evaporation," J. Aerosol Sci. 17, 771 (1986).
[CrossRef]

Ravindran, P.

A. K. Ray, E. J. Davis, and P. Ravindran, "Determination of ultra-low vapor pressures by submicron droplet evaporation," J. Chem. Phys. 71, 582- 587 (1979).
[CrossRef]

Ray, A. K.

A. K. Ray and S. Venkatraman, "Binary activity coefficients from microdroplet evaporation," AICHE J. 41, 938-947 (1995).
[CrossRef]

J. L. Huckaby, A. K. Ray, and B. Das, "Determination of size, refractive index, and dispersion of single droplets from wavelength-dependent scattering spectra," Appl. Opt. 33, 7112-7125 (1994).
[CrossRef] [PubMed]

A. K. Ray, E. J. Davis, and P. Ravindran, "Determination of ultra-low vapor pressures by submicron droplet evaporation," J. Chem. Phys. 71, 582- 587 (1979).
[CrossRef]

Richardson, C. B.

C. B. Richardson, "A stabilizer for single microscopic particles in a quadrupole trap," Rev. Sci. Instrum. 61, 1334-1335 (1990).
[CrossRef]

C. B. Richardson, R. L. Hightower, and A. L. Pigg, "Optical measurement of the evaporation of sulfuric acid droplets," Appl. Opt. 25, 1226-1229 (1986).
[CrossRef] [PubMed]

Rosenørn, T.

J. Mønster, T. Rosenørn, B. Svenningsson, and M. Bilde, "Evaporation of methyl- and dimethyl-substituted malonic, succinic, glutaric and adipic acid particles at ambient temperatures," J. Aerosol Sci. 35, 1453-1465 (2004).

M. Bilde, B. Svenningsson, J. Mønster, and T. Rosenørn, "Even-odd alternation of evaporation rates and vapor pressures of C3-C9 dicarboxylic acid aerosols," Env. Sci. Tech. 37, 1371-1378 (2003).
[CrossRef]

Rubel, G. O.

G. O. Rubel, "Evaporation of single aerosol binary oil droplets," J. Colloid Interface Sci. 85, 549-555 (1982).
[CrossRef]

Simon, A.

F. Weritz, A. Simon, and T. Leisner, "Infrared microspectroscopy on single levitated droplets," Environ. Sci. Pollut. Res. 4, 92-99 (2002).

Svenningsson, B.

J. Mønster, T. Rosenørn, B. Svenningsson, and M. Bilde, "Evaporation of methyl- and dimethyl-substituted malonic, succinic, glutaric and adipic acid particles at ambient temperatures," J. Aerosol Sci. 35, 1453-1465 (2004).

M. Bilde, B. Svenningsson, J. Mønster, and T. Rosenørn, "Even-odd alternation of evaporation rates and vapor pressures of C3-C9 dicarboxylic acid aerosols," Env. Sci. Tech. 37, 1371-1378 (2003).
[CrossRef]

Thomson, D. S.

B. Zobrist, C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter, "Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect," Atmos. Chem. Phys. Discuss. 6, 3571-3609 (2006).
[CrossRef]

Thurn, R.

R. Thurn, and W. Kiefer, "Observations of structural resonances in the Raman spectra of optically levitated dielectric microspheres," J. Raman Spectrosc. 15, 411-413 (1984).
[CrossRef]

R. Thurn, and W. Kiefer, "Raman-Microsampling technique applying optical levitation by radiation pressure," Appl. Spectrosc. 38, 78-83 (1984).
[CrossRef]

Venkatraman, S.

A. K. Ray and S. Venkatraman, "Binary activity coefficients from microdroplet evaporation," AICHE J. 41, 938-947 (1995).
[CrossRef]

Weers, U.

U. K. Krieger, C. A. Colberg, U. Weers, T. Koop, Th. Peter, "Supercooling of single H2SO4/H2O aerosols to 158 K: no evidence for the occurrence of the octahydrate," Geophys. Res. Lett. 27, 2097-2100 (2000).
[CrossRef]

Weritz, F.

F. Weritz, A. Simon, and T. Leisner, "Infrared microspectroscopy on single levitated droplets," Environ. Sci. Pollut. Res. 4, 92-99 (2002).

Widmann, J. F.

J. F. Widmann, C. M. Heusmann, and E. J. Davis, "The effect of a polymeric additive on the evaporation of organic aerocolloidal droplets," Colloid. Polym. Sci. 276, 197-205 (1998).
[CrossRef]

Yoda, S.

P. F. Paradis, T. Ishikawa, and S. Yoda, "Non-contact measurement technique of the vapor pressure of liquid and high temperature solid materials," Eur. Phys. J. Appl. Phys. 22, 97-101 (2003).
[CrossRef]

Zardini, A.

B. Zobrist, C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter, "Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect," Atmos. Chem. Phys. Discuss. 6, 3571-3609 (2006).
[CrossRef]

Zobrist, B.

B. Zobrist, C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter, "Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect," Atmos. Chem. Phys. Discuss. 6, 3571-3609 (2006).
[CrossRef]

AICHE J. (1)

A. K. Ray and S. Venkatraman, "Binary activity coefficients from microdroplet evaporation," AICHE J. 41, 938-947 (1995).
[CrossRef]

Appl. Opt. (3)

Appl. Spectrosc. (1)

Atmos. Chem. Phys. (1)

C. E. Lund Myhre and C. J. Nielsen, "Optical properties in the UV and visible spectral region of organic acids relevant to tropospheric aerosols," Atmos. Chem. Phys. 4, 1759-1769 (2004).
[CrossRef]

Atmos. Chem. Phys. Discuss. (1)

B. Zobrist, C. Marcolli, T. Koop, B. P. Luo, D. M. Murphy, U. Lohmann, A. Zardini, U. K. Krieger, T. Corti, D. J. Cziczo, S. Fueglistaler, P. K. Hudson, D. S. Thomson, and T. Peter, "Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect," Atmos. Chem. Phys. Discuss. 6, 3571-3609 (2006).
[CrossRef]

Colloid. Polym. Sci. (1)

J. F. Widmann, C. M. Heusmann, and E. J. Davis, "The effect of a polymeric additive on the evaporation of organic aerocolloidal droplets," Colloid. Polym. Sci. 276, 197-205 (1998).
[CrossRef]

Env. Sci. Tech. (2)

C. Peng, M. N. Chan and C. K. Chan, The hygroscopic properties of dicarboxylic and multifunctional acids: measurements and UNIFAC predictions, Env. Sci. Tech. 35, 4495-4501 (2001).
[CrossRef]

M. Bilde, B. Svenningsson, J. Mønster, and T. Rosenørn, "Even-odd alternation of evaporation rates and vapor pressures of C3-C9 dicarboxylic acid aerosols," Env. Sci. Tech. 37, 1371-1378 (2003).
[CrossRef]

Environ. Sci. Pollut. Res. (1)

F. Weritz, A. Simon, and T. Leisner, "Infrared microspectroscopy on single levitated droplets," Environ. Sci. Pollut. Res. 4, 92-99 (2002).

Eur. Phys. J. Appl. Phys. (1)

P. F. Paradis, T. Ishikawa, and S. Yoda, "Non-contact measurement technique of the vapor pressure of liquid and high temperature solid materials," Eur. Phys. J. Appl. Phys. 22, 97-101 (2003).
[CrossRef]

Geophys. Res. Lett. (1)

U. K. Krieger, C. A. Colberg, U. Weers, T. Koop, Th. Peter, "Supercooling of single H2SO4/H2O aerosols to 158 K: no evidence for the occurrence of the octahydrate," Geophys. Res. Lett. 27, 2097-2100 (2000).
[CrossRef]

J. Aerosol Sci. (2)

J. Mønster, T. Rosenørn, B. Svenningsson, and M. Bilde, "Evaporation of methyl- and dimethyl-substituted malonic, succinic, glutaric and adipic acid particles at ambient temperatures," J. Aerosol Sci. 35, 1453-1465 (2004).

D. J. Rader, and P. H. McMurry, "Application of the Tandem differential mobility analyzer to studies of droplet growth or evaporation," J. Aerosol Sci. 17, 771 (1986).
[CrossRef]

J. Chem. Phys. (1)

A. K. Ray, E. J. Davis, and P. Ravindran, "Determination of ultra-low vapor pressures by submicron droplet evaporation," J. Chem. Phys. 71, 582- 587 (1979).
[CrossRef]

J. Colloid Interface Sci. (1)

G. O. Rubel, "Evaporation of single aerosol binary oil droplets," J. Colloid Interface Sci. 85, 549-555 (1982).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

J. R. Probert-Jones, "Resonance component of backscattering by large dielectric spheres," J. Opt. Soc. Am. A 1, 822-830 (1984).
[CrossRef]

P. Chýlek, "Resonance structure of Mie scattering: distance between resonances," J. Opt. Soc. Am. A 7, (1990)
[CrossRef]

J. Phys. Chem. A (1)

C. A. Colberg, "Morphological investigations of single levitated H2SO4/NH3/H2O aerosol particles during deliquescence/efflorescence experiments," J. Phys. Chem. A 108, 2700-2709 (2004).
[CrossRef]

J. Raman Spectrosc. (1)

R. Thurn, and W. Kiefer, "Observations of structural resonances in the Raman spectra of optically levitated dielectric microspheres," J. Raman Spectrosc. 15, 411-413 (1984).
[CrossRef]

Langmuir (1)

E. J. Davis, "Light-scattering and aerodynamic size measurements for homogeneous and inhomogeneous microspheres," Langmuir 1, 373-379 (1985).
[CrossRef]

Phys. Rev. Lett. (2)

A. Ashkin, and J. M. Dziedzic, "Observation of resonances in the radiation pressure on dielectric spheres," Phys. Rev. Lett. 38, p.1351 (1977).
[CrossRef]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonances in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Rev. Sci. Instrum. (2)

E. J. Davis, "The double-ring electrodynamic balance for microparticle characterization," Rev. Sci. Instrum. 61, 1281-1288 (1990).
[CrossRef]

C. B. Richardson, "A stabilizer for single microscopic particles in a quadrupole trap," Rev. Sci. Instrum. 61, 1334-1335 (1990).
[CrossRef]

Other (6)

W. C. Hinds, "Aerosol Technology, 2nd edition," (John Wiley & Sons Inc., New York, 1999).

J. C. Maxwell, in "Encyclopedia Britannica," Vol. 2, p.82 (1877).

N. A. Fuchs, A.G. Sutugin, "In Topics in Current Aerosol Research" (Hidy, G. N., Brock, J. R., Eds.; Pergamon Press: New York, 1971).

R. B. Bird, W. E. Stewart, and E. N. Lightfoot, "Transport Phenomena," (Wiley, NewYork, 1960).

IPCC Third Assessment Report, "The Scientific Basis," chapters 4 and 5, http://www.grida.no/climate/ipcc tar.

H. C. van de Hulst, "Light Scattering by Small Particles," (Dover, New York, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic of the apparatus. A three-wall glass chamber hosts four metal rings which supply the electric field needed for particle levitation. The particle is illuminated by two laser beams from below and by the LED from aside. The scattered light is collected in the near and far field view by two CCD cameras, and feeded to a spectrograph via an optical fiber.

Fig. 2.
Fig. 2.

Example of the experimental dataset processing. Panel (a): The LED reference spectrum (red curve) and the original intensity of light scattered by the particle (aqueous malonic acid particle, radius ca. 8.1 μm, refractive index ca. 1.41, black curve). The latter is plotted in panel (b) after background correction and dividing by LED reference. The signal is smoothed by application of an FFT filter and shown in panel (c).

Fig. 3.
Fig. 3.

Experimental raw data from a vapor pressure measurement of an aqueous malonic acid particle at 291 K exposed to different relative humidities. The uppermost panel (a) shows the DC voltage (proportional to the mass) necessary to compensate the gravitational force (black line). The red line is the relative humidity. Panel (b) shows the corresponding resonance spectra, with color-coded intensity. The values in the palette represent the intensity of the scattered light divided by the reference LED signal, as explained in the caption of Fig.2. In panel (c) the location of the resonance peak at 600 nm at t=0 is tracked during its shift (gray line) up to t=100 ks, where it exits the domain of our spectrograph. Thus, a new peak at 592 nm and t=100 ks is chosen and tracked up to 190 ks. The corresponding r 2 is calculated through Eq. (7) and displayed in panel (d) together with the linear fits in the regions of constant RH (red green and orange overlapped lines). The results of the three fits are: dr 2/dt = -3.81×10-5 μm 2/s, -4.14×10-5 μm 2/s, and -4.82×10-5 μm 2/s for RH=51%, 42% and 32%.

Fig. 4.
Fig. 4.

Panel (a) shows 90’000 s (roughly 24 hours) of the same raw data already presented in Fig.3; malonic acid particle at 291 K and 32 % relative humidity, size ca. 7.2 μm. Panel (b) shows for comparison the scattered intensity at the fixed wavelength of the HeNe laser (633 nm at 90° scattering angle, sampled with 1 Hz). Panel (c) and (d) show the same kind of data - also for a time span of 90’000 s - for a malonic acid particle at 273.5 K and 21% relative humidity, size ca. 6.3 μm.

Fig. 5.
Fig. 5.

Vapor pressure of aqueous malonic acid measured at different temperatures as a function of concentration in mole fraction. All experimental points are fitted simultaneously to Eq. (8) (except for the datapoint at x = 0.12 at T = 291 K), leading to the corresponding colored lines. The shaded area represents the region of unreliability of our measurements (see text for a detailed description).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ x = arctan ( m 2 1 ) 1 / 2 ( m 2 1 ) 1 / 2 .
r = Δ x 2 π ( 1 λ n + 1 l 1 λ n l ) .
d r d t = D M R ρ r ( p T p T ) Φ ,
D = 3 π 2 64 ( 1 n o d c 2 ) ( R T M ) 1 2 ,
p = r d r d t R T M ρ D ,
p = 1 2 d r 2 d t R T M ρ D .
r = x mode λ p 2 π ,
p = p 0 γ x exp [ Δ H R ( 1 T 1 T ) ] ,

Metrics