Abstract

We demonstrate a novel alignment-free all-fiber source for generating telecom-band polarization-entangled photon pairs. Polarization entanglement is created by injecting two relatively delayed, orthogonally polarized pump pulses into a piece of dispersion-shifted fiber, where each one independently engages in four-photon scattering, and then removing any distinguishability between the correlated photon-pairs produced by each pulse at the fiber output. Our scheme uses a Michelson-interferometer configuration with Faraday mirrors to achieve practically desirable features such as ultra-stable performance and turnkey operation. Up to 91.7% two-photon-interference visibility is observed without subtracting the accidental coincidences that arise from background photons while operating the source at room temperature.

© 2006 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber

Xiaoying Li, Paul L. Voss, Jun Chen, Jay E. Sharping, and Prem Kumar
Opt. Lett. 30(10) 1201-1203 (2005)

Characterization of fiber-generated entangled photon pairs with superconducting single-photon detectors

Chuang Liang, Kim Fook Lee, Milja Medic, Prem Kumar, Robert H. Hadfield, and Sae Woo Nam
Opt. Express 15(3) 1322-1327 (2007)

Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber

Kim Fook Lee, Jun Chen, Chuang Liang, Xiaoying Li, Paul L. Voss, and Prem Kumar
Opt. Lett. 31(12) 1905-1907 (2006)

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2001).
    [Crossref]
  2. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
    [Crossref]
  3. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4340 (1995).
    [Crossref] [PubMed]
  4. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
    [Crossref]
  5. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band,” Phys. Rev. Lett. 94, 053601 (2005).
    [Crossref] [PubMed]
  6. H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
    [Crossref]
  7. X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
    [Crossref] [PubMed]
  8. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
    [Crossref] [PubMed]
  9. J. E. Sharping, J. Chen, X. Li, and P. Kumar, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12, 3086–3094 (2004).
    [Crossref] [PubMed]
  10. J. Fan, A. Dogariu, and L. J. Wang, “Efficient generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 30, 1530–1532 (2005).
    [Crossref] [PubMed]
  11. P. Kumar, M. Fiorentino, P. L. Voss, and J. E. Sharping, “All-fiber photon-pair source for quantum communications,” U. S. Patent No. 6,897,434 (2005).
  12. X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, “An integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73, 052301 (2006).
    [Crossref]
  13. Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, “Single-frequency and polarization-stable oscillation of Fabry-Perot fiber laser using a nonpolarization-maintaining fiber and an intracavity etalon,” Photon. Technol. Lett. 8, 1468–1470 (1996).
    [Crossref]
  14. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
    [Crossref]
  15. X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30, 1201–1203 (2005).
    [Crossref] [PubMed]
  16. C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” postdeadline paper, Optical Fiber Communications Conference (OFC’2006), paper PDP35.
  17. H. Takesue, “Long-distance distribution of time-bin entanglement generated in a cooled fiber,” http://xxx.lanl.gov/abs/quant-ph/0512163.
  18. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled-photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
    [Crossref] [PubMed]

2006 (2)

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, “An integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73, 052301 (2006).
[Crossref]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled-photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
[Crossref] [PubMed]

2005 (4)

2004 (3)

2002 (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]

2001 (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2001).
[Crossref]

1997 (2)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
[Crossref]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

1996 (1)

Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, “Single-frequency and polarization-stable oscillation of Fabry-Perot fiber laser using a nonpolarization-maintaining fiber and an intracavity etalon,” Photon. Technol. Lett. 8, 1468–1470 (1996).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4340 (1995).
[Crossref] [PubMed]

Bouwmeester, D.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
[Crossref]

Chen, J.

Dogariu, A.

Duligall, J.

Eibl, M.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
[Crossref]

Fan, J.

Fiorentino, M.

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]

P. Kumar, M. Fiorentino, P. L. Voss, and J. E. Sharping, “All-fiber photon-pair source for quantum communications,” U. S. Patent No. 6,897,434 (2005).

Fulconis, J.

Gisin, N.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2001).
[Crossref]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Herzog, T.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Hotate, K.

Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, “Single-frequency and polarization-stable oscillation of Fabry-Perot fiber laser using a nonpolarization-maintaining fiber and an intracavity etalon,” Photon. Technol. Lett. 8, 1468–1470 (1996).
[Crossref]

Huttner, B.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Inoue, K.

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[Crossref]

Kikuchi, K.

Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, “Single-frequency and polarization-stable oscillation of Fabry-Perot fiber laser using a nonpolarization-maintaining fiber and an intracavity etalon,” Photon. Technol. Lett. 8, 1468–1470 (1996).
[Crossref]

Kumar, P.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled-photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
[Crossref] [PubMed]

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, “An integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73, 052301 (2006).
[Crossref]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30, 1201–1203 (2005).
[Crossref] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[Crossref] [PubMed]

J. E. Sharping, J. Chen, X. Li, and P. Kumar, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12, 3086–3094 (2004).
[Crossref] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]

P. Kumar, M. Fiorentino, P. L. Voss, and J. E. Sharping, “All-fiber photon-pair source for quantum communications,” U. S. Patent No. 6,897,434 (2005).

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” postdeadline paper, Optical Fiber Communications Conference (OFC’2006), paper PDP35.

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4340 (1995).
[Crossref] [PubMed]

Lee, K. F.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, “An integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73, 052301 (2006).
[Crossref]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled-photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
[Crossref] [PubMed]

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” postdeadline paper, Optical Fiber Communications Conference (OFC’2006), paper PDP35.

Li, X.

Liang, C.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, “An integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73, 052301 (2006).
[Crossref]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled-photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
[Crossref] [PubMed]

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” postdeadline paper, Optical Fiber Communications Conference (OFC’2006), paper PDP35.

Mattle, K.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4340 (1995).
[Crossref] [PubMed]

Muller, A.

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Pan, J.-W.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
[Crossref]

Rarity, J. G.

Ribordy, G.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2001).
[Crossref]

Russell, P. S. J.

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4340 (1995).
[Crossref] [PubMed]

Sharping, J.

Sharping, J. E.

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30, 1201–1203 (2005).
[Crossref] [PubMed]

J. E. Sharping, J. Chen, X. Li, and P. Kumar, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12, 3086–3094 (2004).
[Crossref] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]

P. Kumar, M. Fiorentino, P. L. Voss, and J. E. Sharping, “All-fiber photon-pair source for quantum communications,” U. S. Patent No. 6,897,434 (2005).

Shih, Y. H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4340 (1995).
[Crossref] [PubMed]

Takesue, H.

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[Crossref]

H. Takesue, “Long-distance distribution of time-bin entanglement generated in a cooled fiber,” http://xxx.lanl.gov/abs/quant-ph/0512163.

Takushima, Y.

Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, “Single-frequency and polarization-stable oscillation of Fabry-Perot fiber laser using a nonpolarization-maintaining fiber and an intracavity etalon,” Photon. Technol. Lett. 8, 1468–1470 (1996).
[Crossref]

Tittel, W.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2001).
[Crossref]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Voss, P. L.

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, “An integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73, 052301 (2006).
[Crossref]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled-photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
[Crossref] [PubMed]

X. Li, P. L. Voss, J. Chen, J. E. Sharping, and P. Kumar, “Storage and long-distance distribution of telecommunications-band polarization entanglement generated in an optical fiber,” Opt. Lett. 30, 1201–1203 (2005).
[Crossref] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

X. Li, J. Chen, P. L. Voss, J. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communications: improved generation of correlated photons,” Opt. Express 12, 3737–3744 (2004).
[Crossref] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]

P. Kumar, M. Fiorentino, P. L. Voss, and J. E. Sharping, “All-fiber photon-pair source for quantum communications,” U. S. Patent No. 6,897,434 (2005).

Wadsworth, W. J.

Wang, L. J.

Weinfurter, H.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4340 (1995).
[Crossref] [PubMed]

Yamashita, S.

Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, “Single-frequency and polarization-stable oscillation of Fabry-Perot fiber laser using a nonpolarization-maintaining fiber and an intracavity etalon,” Photon. Technol. Lett. 8, 1468–1470 (1996).
[Crossref]

Zbinden, H.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2001).
[Crossref]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Zeilinger, A.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4340 (1995).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).
[Crossref]

Nature (1)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–578 (1997).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Photon. Technol. Lett. (2)

Y. Takushima, S. Yamashita, K. Kikuchi, and K. Hotate, “Single-frequency and polarization-stable oscillation of Fabry-Perot fiber laser using a nonpolarization-maintaining fiber and an intracavity etalon,” Photon. Technol. Lett. 8, 1468–1470 (1996).
[Crossref]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-fiber photon-pair source for quantum communication,” Photon. Technol. Lett. 14, 983–985 (2002).
[Crossref]

Phys. Rev. A (2)

X. Li, C. Liang, K. F. Lee, J. Chen, P. L. Voss, and P. Kumar, “An integrable optical-fiber source of polarization-entangled photon pairs in the telecom band,” Phys. Rev. A 73, 052301 (2006).
[Crossref]

H. Takesue and K. Inoue, “Generation of polarization-entangled photon pairs and violation of Bell’s inequality using spontaneous four-wave mixing in a fiber loop,” Phys. Rev. A 70, 031802 (2004).
[Crossref]

Phys. Rev. Lett. (2)

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band,” Phys. Rev. Lett. 94, 053601 (2005).
[Crossref] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4340 (1995).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2001).
[Crossref]

Other (3)

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” postdeadline paper, Optical Fiber Communications Conference (OFC’2006), paper PDP35.

H. Takesue, “Long-distance distribution of time-bin entanglement generated in a cooled fiber,” http://xxx.lanl.gov/abs/quant-ph/0512163.

P. Kumar, M. Fiorentino, P. L. Voss, and J. E. Sharping, “All-fiber photon-pair source for quantum communications,” U. S. Patent No. 6,897,434 (2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a) Scheme for the turnkey polarization-entangled photon-pair source. (b) Photon-pair receiver for characterizing the source. FM1-3, fiber Faraday mirrors; Circ, circulator; IF, fiber interference filters; DSF, dispersion-shifted fiber; PBS, polarization beam splitter; HWP, half-wave plate; QWP quarter-wave plate; SPD, single-photon detector.

Fig. 2.
Fig. 2.

Experimental results with different average pump powers coupled in the DSF: (a) 111 μW; (b) 42.3 μW; (c) 27.5 μW. (d): TPI visibility versus photon-pair emission rate. The curve has no meaning; it is shown only to guide the eye.

Metrics