Abstract

We propose a method to control the chromatic dispersion properties of photonic crystal fibers using the selective hole filling technique. The method is based on a single hole-size fiber geometry, and uses an appropriate index-matching liquid to modify the effective size of the filled holes. The dependence of dispersion properties of the fiber on the design parameters such as the refractive index of the liquid, lattice constant and hole diameter are studied numerically. It is shown that very small dispersion values between 0±0.5ps/nm-km can be achieved over a bandwidth of 430–510nm in the communication wavelength region of 1300–1900nm. Three such designs are proposed with air hole diameters in the range 1.5–2.0μm.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andres, and P. S. J. Russel, "Deigning a photonic crystal fibre with flattened chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
    [CrossRef]
  2. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, "Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett. 25, 790-792 (2000).
    [CrossRef]
  3. A. Ferrando, E. Silvestre, P. Andr´es, J. J. Miret, and M. V. Andr´es, "Designing the properties of dispersionflattened photonic crystal fibers," Opt. Express 9, 687-697 (2001).
    [CrossRef] [PubMed]
  4. W. H. Reeves, J. C. Knight, P. S. J. Russell, and P. J. Roberts, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10, 609-613 (2002).
    [PubMed]
  5. K. P. Hansen, "Dispersion flattened hybrid-core nonlinear photonic crystal fiber," Opt. Express 11, 1503-1509 (2003).
    [CrossRef] [PubMed]
  6. A. Ferrando, E. Silvestre, J. J. Miret, P. Andres, andM. V. Andres, "Donor and acceptor guided modes in photonic crystal fibers," Opt. Lett. 25, 1328-1330 (2000).
    [CrossRef]
  7. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003).
    [CrossRef] [PubMed]
  8. J. Wang, M. Gao, C. Jiang, andW. Hu, "Design and parametric amplification analysis of dispersion-flat photonic crystal fibers," Chinese Opt. Lett. 3, 380-382 (2005).
  9. K. Saitoh and M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt. Express 12, 2027-2032 (2004).
    [CrossRef] [PubMed]
  10. K. Saitoh, N. J. Florous, and M. Koshiba, "Theoretical realization of holey fiber with flat chromatic dispersion and large mode area: an intriguing defected approach," Opt. Lett. 31, 26-28 (2006).
    [CrossRef] [PubMed]
  11. N. J. Florous, K. Saitoh, andM. Koshiba, "The role of artificial defects for engineering large effective mode area, flat chromatic dispersion and low leakage losses in photonic crystal fibers: Towards high speed reconfigurable transmission platforms," Opt. Express 14, 901-913 (2006).
    [CrossRef] [PubMed]
  12. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express 13, 3728-3736 (2005).
    [CrossRef] [PubMed]
  13. T.-L. Wu and C.-H. Chao, "A Novel Ultraflattened Dispersion Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 17, 67-69 (2005).
    [CrossRef]
  14. C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, "Water-core Fresnel fiber," Opt. Express 13, 3890- 3895 (2005).
    [CrossRef] [PubMed]
  15. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. F´evrier, P. Roy, J.-L. Auguste, and J.-M. Blondy, "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13, 4786-4791 (2005).
    [CrossRef] [PubMed]
  16. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
    [CrossRef] [PubMed]
  17. C. Kerbage, P. Steinvurzel, P. Reyes, P. S. Westbrook, R. S. Windeler, A. Hale, and B. J. Eggleton, "Highly tunable birefringent microstructured optical fiber," Opt. Lett. 27, 842-844 (2002).
    [CrossRef]
  18. F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
    [CrossRef] [PubMed]
  19. C. Zhang, G. Kai, Z. Wang, T. Sun, C. Wang, Y. Liu,W. Zhang, J. Liu, S. Yuan, and X. Dong, "Transformation of a transmission mechanism by filling the holes of normal silica-guiding microstructure fibers with nematic liquid crystal," Opt. Lett. 30, 2372-2374 (2005).
    [CrossRef] [PubMed]
  20. T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, "Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber," Appl. Opt. 45, 2261-2264 (2006).
    [CrossRef] [PubMed]
  21. M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06um in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006).
    [CrossRef] [PubMed]
  22. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, "Antiresonant reflecting photonic crystal optical waveguides," Opt. Lett. 27, 1592-1594 (2002).
    [CrossRef]
  23. P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12, 5424-5433 (2004).
    [CrossRef] [PubMed]
  24. Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional micostructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
    [CrossRef]
  25. K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
    [CrossRef]
  26. L. Xiao,W. Jin,M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005).
    [CrossRef] [PubMed]
  27. M. Sasaki, T. Ando, S. Nogawa, and K. Hane, "Direct Photolithography on Optical Fiber End," Jpn. J. Appl. Phys. 41, 4350-4355 (2002).
    [CrossRef]
  28. K. M. Gundu, M. Brio, and J. V. Moloney, "A mixed high-order vector finite element method for waveguides: Convergence and spurious mode studies," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 18, 351-364 (2005).
  29. J. R. Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html
  30. E. C. M. P. Steinvurzel, E. D. Moore and B. J. Eggleton, "Tuning properties of long period gratings in photonic bandgap fibers," Opt. Lett. 31, 2103-2105 (2006).
    [CrossRef] [PubMed]

2006 (6)

2005 (9)

J. Wang, M. Gao, C. Jiang, andW. Hu, "Design and parametric amplification analysis of dispersion-flat photonic crystal fibers," Chinese Opt. Lett. 3, 380-382 (2005).

T.-L. Wu and C.-H. Chao, "A Novel Ultraflattened Dispersion Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 17, 67-69 (2005).
[CrossRef]

K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

K. M. Gundu, M. Brio, and J. V. Moloney, "A mixed high-order vector finite element method for waveguides: Convergence and spurious mode studies," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 18, 351-364 (2005).

F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express 13, 3728-3736 (2005).
[CrossRef] [PubMed]

C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, "Water-core Fresnel fiber," Opt. Express 13, 3890- 3895 (2005).
[CrossRef] [PubMed]

S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. F´evrier, P. Roy, J.-L. Auguste, and J.-M. Blondy, "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13, 4786-4791 (2005).
[CrossRef] [PubMed]

C. Zhang, G. Kai, Z. Wang, T. Sun, C. Wang, Y. Liu,W. Zhang, J. Liu, S. Yuan, and X. Dong, "Transformation of a transmission mechanism by filling the holes of normal silica-guiding microstructure fibers with nematic liquid crystal," Opt. Lett. 30, 2372-2374 (2005).
[CrossRef] [PubMed]

L. Xiao,W. Jin,M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (2)

2002 (4)

2001 (2)

2000 (2)

1999 (1)

A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andres, and P. S. J. Russel, "Deigning a photonic crystal fibre with flattened chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

Abeeluck, A. K.

Alkeskjold, T. T.

Ando, T.

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, "Direct Photolithography on Optical Fiber End," Jpn. J. Appl. Phys. 41, 4350-4355 (2002).
[CrossRef]

Andr´es, M. V.

Andr´es, P.

Andres, M. V.

A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andres, and P. S. J. Russel, "Deigning a photonic crystal fibre with flattened chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

Andres, P.

Argyros, A.

Auguste, J.-L.

Bjarklev, A.

T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S. Gauza, and S.-T. Wu, "Highly tunable large-core single-mode liquid-crystal photonic bandgap fiber," Appl. Opt. 45, 2261-2264 (2006).
[CrossRef] [PubMed]

K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

Blondy, J.-M.

Brio, M.

K. M. Gundu, M. Brio, and J. V. Moloney, "A mixed high-order vector finite element method for waveguides: Convergence and spurious mode studies," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 18, 351-364 (2005).

Broderick, N. G. R.

Broeng, J.

Canning, J.

Chao, C.-H.

T.-L. Wu and C.-H. Chao, "A Novel Ultraflattened Dispersion Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 17, 67-69 (2005).
[CrossRef]

Chinaud, J.

Cox, F. M.

de Sterke, C. M.

Delaye, P.

Demokan, M. S.

Dong, X.

Eggleton, B. J.

F´evrier, S.

Ferrando, A.

Finazzi, V.

Florous, N. J.

Frey, R.

Gao, M.

J. Wang, M. Gao, C. Jiang, andW. Hu, "Design and parametric amplification analysis of dispersion-flat photonic crystal fibers," Chinese Opt. Lett. 3, 380-382 (2005).

Gauza, S.

Groothoff, N.

Gundu, K. M.

K. M. Gundu, M. Brio, and J. V. Moloney, "A mixed high-order vector finite element method for waveguides: Convergence and spurious mode studies," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 18, 351-364 (2005).

Hale, A.

Hane, K.

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, "Direct Photolithography on Optical Fiber End," Jpn. J. Appl. Phys. 41, 4350-4355 (2002).
[CrossRef]

Hansen, K. P.

Hansen, T. P.

K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

Hasegawa, T.

Hayes, J. R.

Headley, C.

Hermann, D. S.

Ho, H. L.

Hoo, Y. L.

Horak, P.

Huang, Y.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional micostructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Jiang, C.

J. Wang, M. Gao, C. Jiang, andW. Hu, "Design and parametric amplification analysis of dispersion-flat photonic crystal fibers," Chinese Opt. Lett. 3, 380-382 (2005).

Jin, W.

Kai, G.

Kerbage, C.

Knight, J. C.

Koshiba, M.

Kuhlmey, B. T.

Laegsgaard, J.

Large, M. C. J.

Li, J.

Litchinitser, N. M.

Liu, J.

Liu, Y.

Lyytikainen, K.

Martelli, C.

Miret, J. J.

Moloney, J. V.

K. M. Gundu, M. Brio, and J. V. Moloney, "A mixed high-order vector finite element method for waveguides: Convergence and spurious mode studies," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 18, 351-364 (2005).

Monro, T. M.

Monsoriu, J. A.

A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andres, and P. S. J. Russel, "Deigning a photonic crystal fibre with flattened chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

Moore, E. D.

Nielsen, K.

K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

Nogawa, S.

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, "Direct Photolithography on Optical Fiber End," Jpn. J. Appl. Phys. 41, 4350-4355 (2002).
[CrossRef]

Noordegraaf, D.

K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

Poletti, F.

Price, J. H. V.

Reeves, W. H.

Reyes, P.

Richardson, D. J.

Roberts, P. J.

Roosen, G.

Rouvie, A.

Roy, P.

Russel, P. S. J.

A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andres, and P. S. J. Russel, "Deigning a photonic crystal fibre with flattened chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

Russell, P. S. J.

Saitoh, K.

Sasaki, M.

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, "Direct Photolithography on Optical Fiber End," Jpn. J. Appl. Phys. 41, 4350-4355 (2002).
[CrossRef]

Sasaoka, E.

Silvestre, E.

Srensen, T.

K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

Steel, M. J.

Steinvurzel, E. C. M. P.

Steinvurzel, P.

Sun, T.

Tse, M. L. V.

Tse, V.

Viale, P.

Wang, C.

Wang, J.

J. Wang, M. Gao, C. Jiang, andW. Hu, "Design and parametric amplification analysis of dispersion-flat photonic crystal fibers," Chinese Opt. Lett. 3, 380-382 (2005).

Wang, Z.

Westbrook, P. S.

White, T. P.

Windeler, R. S.

Wu, S.-T.

Wu, T.-L.

T.-L. Wu and C.-H. Chao, "A Novel Ultraflattened Dispersion Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 17, 67-69 (2005).
[CrossRef]

Xiao, L.

Xu, Y.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional micostructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Yariv, A.

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional micostructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Yiou, S.

Yuan, S.

Zhang, C.

Zhang, W.

Zhao, C.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Y. Huang, Y. Xu, and A. Yariv, "Fabrication of functional micostructured optical fibers through a selective-filling technique," Appl. Phys. Lett. 85, 5182-5184 (2004).
[CrossRef]

Chinese Opt. Lett. (1)

J. Wang, M. Gao, C. Jiang, andW. Hu, "Design and parametric amplification analysis of dispersion-flat photonic crystal fibers," Chinese Opt. Lett. 3, 380-382 (2005).

Electron. Lett. (1)

A. Ferrando, E. Silvestre, J. J. Miret, J. A. Monsoriu, M. V. Andres, and P. S. J. Russel, "Deigning a photonic crystal fibre with flattened chromatic dispersion," Electron. Lett. 35, 325-327 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T.-L. Wu and C.-H. Chao, "A Novel Ultraflattened Dispersion Photonic Crystal Fiber," IEEE Photon. Technol. Lett. 17, 67-69 (2005).
[CrossRef]

International Journal of Numerical Modelling: Electronic Networks, Devices and Fields (1)

K. M. Gundu, M. Brio, and J. V. Moloney, "A mixed high-order vector finite element method for waveguides: Convergence and spurious mode studies," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields 18, 351-364 (2005).

J. Opt. A: Pure Appl. Opt. (1)

K. Nielsen, D. Noordegraaf, T. Srensen, A. Bjarklev, and T. P. Hansen, "Selective filling of photonic crystal fibres," J. Opt. A: Pure Appl. Opt. 7, L13-L20 (2005).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Sasaki, T. Ando, S. Nogawa, and K. Hane, "Direct Photolithography on Optical Fiber End," Jpn. J. Appl. Phys. 41, 4350-4355 (2002).
[CrossRef]

Opt. Express (14)

K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, "Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion," Opt. Express 11, 843-852 (2003).
[CrossRef] [PubMed]

K. P. Hansen, "Dispersion flattened hybrid-core nonlinear photonic crystal fiber," Opt. Express 11, 1503-1509 (2003).
[CrossRef] [PubMed]

K. Saitoh and M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window," Opt. Express 12, 2027-2032 (2004).
[CrossRef] [PubMed]

P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton, "Long wavelength anti-resonant guidance in high index inclusion microstructured fibers," Opt. Express 12, 5424-5433 (2004).
[CrossRef] [PubMed]

F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, "Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers," Opt. Express 13, 3728-3736 (2005).
[CrossRef] [PubMed]

C. Martelli, J. Canning, K. Lyytikainen, and N. Groothoff, "Water-core Fresnel fiber," Opt. Express 13, 3890- 3895 (2005).
[CrossRef] [PubMed]

S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. F´evrier, P. Roy, J.-L. Auguste, and J.-M. Blondy, "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13, 4786-4791 (2005).
[CrossRef] [PubMed]

N. J. Florous, K. Saitoh, andM. Koshiba, "The role of artificial defects for engineering large effective mode area, flat chromatic dispersion and low leakage losses in photonic crystal fibers: Towards high speed reconfigurable transmission platforms," Opt. Express 14, 901-913 (2006).
[CrossRef] [PubMed]

L. Xiao,W. Jin,M. S. Demokan, H. L. Ho, Y. L. Hoo, and C. Zhao, "Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer," Opt. Express 13, 9014-9022 (2005).
[CrossRef] [PubMed]

A. Ferrando, E. Silvestre, P. Andr´es, J. J. Miret, and M. V. Andr´es, "Designing the properties of dispersionflattened photonic crystal fibers," Opt. Express 9, 687-697 (2001).
[CrossRef] [PubMed]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001).
[CrossRef] [PubMed]

W. H. Reeves, J. C. Knight, P. S. J. Russell, and P. J. Roberts, "Demonstration of ultra-flattened dispersion in photonic crystal fibers," Opt. Express 10, 609-613 (2002).
[PubMed]

F. M. Cox, A. Argyros, and M. C. J. Large, "Liquid-filled hollow core microstructured polymer optical fiber," Opt. Express 14, 4135-4140 (2006).
[CrossRef] [PubMed]

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06um in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006).
[CrossRef] [PubMed]

Opt. Lett. (7)

Other (1)

J. R. Shewchuk, http://www.cs.cmu.edu/~quake/triangle.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Small air holes can be mimicked by filling large air holes with a liquid.

Fig. 2.
Fig. 2.

Both the dispersion and its slope are modified when the refractive index of the dispersionless liquid is varied. An optimal value is obtained when the dispersion is flat albeit not near zero.

Fig. 3.
Fig. 3.

Increasing the value of pitch (Λ) raises the dispersion curve without significantly modifying the slope. Thus, pitch is varied until the dispersion curve is brought close to zero.

Fig. 4.
Fig. 4.

Increasing the hole diameter d increases the negative slope of the dispersion without significantly modifying the value. Thus, diameter is varied until the dispersion curve is flat.

Fig. 5.
Fig. 5.

We have ultra-flat dispersion over the wavelength region 1400nm–1800nm with a hypothetical liquid of index 1.3975

Fig. 6.
Fig. 6.

As the fundamental mode is tightly confined to the core the contribution of the material dispersion of the liquid to the total dispersion is about 10% of its nominal value.

Fig. 7.
Fig. 7.

Three different dispersion curves obtained by the selective hole filling technique. Different geometries of the fiber, together with a suitable choice of the filling liquid makes it possible to control the dispersion “landscape” of the fiber.

Tables (1)

Tables Icon

Table 1. Summary of the optimal geometrical parameters and dispersion curve flatness characteristics for the three different fiber designs.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D = λ c d 2 n eff d λ 2
n 1 ( λ ) = 1.387868 + 434180.6 λ 2 4.474685 × 10 11 λ 4
n 2 ( λ ) = 1.386127 + 316444.2 λ 2 2.892476 × 10 11 λ 4
n 3 ( λ ) = 1.343219 + 237020.0 λ 2 5.438844 × 10 10 λ 4

Metrics