Abstract

Characteristics of small signal gain spectrum and static gain saturation of integrated twin-guide semiconductor optical amplifier (ITG-SOA) are theoretically investigated and compared with those of SOA. A comprehensive ITG-SOA model is proposed to effectively extend the application range of previous models. The model considers the interaction between carrier density and photon density as well as the longitudinal variation of phase-match degree induced by input power. Two kinds of ITG-SOAs are expected to have different small signal amplification characteristics. The unique gain saturation characteristics of ITG-SOA, which have been well explained, show great promise in wavelength conversion: enhanced extinction ratio, reduced input pump power level, and quasi-digital response.

© 2006 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kambayashi and Y. Suematsu, "Amplification characteristics of Integrated Twin-Guide Laser Amplifier," The Trans.IECE Japan,  E64, 489-496(1981).
  2. S. -C. Lee, R. Varrazza, and S. Yu, "Optical label processing and 10-Gb/s variable length optical packet switching using a 4x4 optical crosspoint switch," IEEE Photon. Technol. Lett. 17, 1085-1087 (2005).
    [CrossRef]
  3. B. R. Bennett, R. A. Soref, and J. A. Del Alamo, "Carrier-induced change in refractive index of InP, GaAs and InGaAsP," IEEE J. Quantum Electron. 26, 113-122 (1990).
    [CrossRef]
  4. G. H. B. Thompson, "Analysis of optical directional couplers that include gain or loss and their application to semiconductor slab dielectric guides," J. Lightwave Technol. 4, 1678-1693 (1986).
    [CrossRef]
  5. K. Obermann, "All-optical wavelength conversion based on cross-gain modulation and four-wave mixing in semiconductor optical amplifiers," Ph.D. dissertation, Technische University, Berlin, Ger., 1998.
  6. A. E. Willner and W. Shieh, "Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability," J. Lightwave Technol. 13, 771-781 (1995).
    [CrossRef]
  7. A. Yariv, Optical electronics in Modern Communications, (Oxford University Press, Inc., Oxford, 1997).
  8. J. -P. Weber, "Optimization of the carrier-induced effective index change in InGaAsP waveguides¯application to tunable Bragg filters," IEEE J. Quantum Electron. 30, 1801-1816 (1994).
    [CrossRef]

2005

S. -C. Lee, R. Varrazza, and S. Yu, "Optical label processing and 10-Gb/s variable length optical packet switching using a 4x4 optical crosspoint switch," IEEE Photon. Technol. Lett. 17, 1085-1087 (2005).
[CrossRef]

1995

A. E. Willner and W. Shieh, "Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability," J. Lightwave Technol. 13, 771-781 (1995).
[CrossRef]

1994

J. -P. Weber, "Optimization of the carrier-induced effective index change in InGaAsP waveguides¯application to tunable Bragg filters," IEEE J. Quantum Electron. 30, 1801-1816 (1994).
[CrossRef]

1990

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, "Carrier-induced change in refractive index of InP, GaAs and InGaAsP," IEEE J. Quantum Electron. 26, 113-122 (1990).
[CrossRef]

1986

G. H. B. Thompson, "Analysis of optical directional couplers that include gain or loss and their application to semiconductor slab dielectric guides," J. Lightwave Technol. 4, 1678-1693 (1986).
[CrossRef]

1981

T. Kambayashi and Y. Suematsu, "Amplification characteristics of Integrated Twin-Guide Laser Amplifier," The Trans.IECE Japan,  E64, 489-496(1981).

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, "Carrier-induced change in refractive index of InP, GaAs and InGaAsP," IEEE J. Quantum Electron. 26, 113-122 (1990).
[CrossRef]

Del Alamo, J. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, "Carrier-induced change in refractive index of InP, GaAs and InGaAsP," IEEE J. Quantum Electron. 26, 113-122 (1990).
[CrossRef]

Kambayashi, T.

T. Kambayashi and Y. Suematsu, "Amplification characteristics of Integrated Twin-Guide Laser Amplifier," The Trans.IECE Japan,  E64, 489-496(1981).

Lee, S. -C.

S. -C. Lee, R. Varrazza, and S. Yu, "Optical label processing and 10-Gb/s variable length optical packet switching using a 4x4 optical crosspoint switch," IEEE Photon. Technol. Lett. 17, 1085-1087 (2005).
[CrossRef]

Shieh, W.

A. E. Willner and W. Shieh, "Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability," J. Lightwave Technol. 13, 771-781 (1995).
[CrossRef]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, "Carrier-induced change in refractive index of InP, GaAs and InGaAsP," IEEE J. Quantum Electron. 26, 113-122 (1990).
[CrossRef]

Suematsu, Y.

T. Kambayashi and Y. Suematsu, "Amplification characteristics of Integrated Twin-Guide Laser Amplifier," The Trans.IECE Japan,  E64, 489-496(1981).

Thompson, G. H. B.

G. H. B. Thompson, "Analysis of optical directional couplers that include gain or loss and their application to semiconductor slab dielectric guides," J. Lightwave Technol. 4, 1678-1693 (1986).
[CrossRef]

Varrazza, R.

S. -C. Lee, R. Varrazza, and S. Yu, "Optical label processing and 10-Gb/s variable length optical packet switching using a 4x4 optical crosspoint switch," IEEE Photon. Technol. Lett. 17, 1085-1087 (2005).
[CrossRef]

Weber, J. -P.

J. -P. Weber, "Optimization of the carrier-induced effective index change in InGaAsP waveguides¯application to tunable Bragg filters," IEEE J. Quantum Electron. 30, 1801-1816 (1994).
[CrossRef]

Willner, A. E.

A. E. Willner and W. Shieh, "Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability," J. Lightwave Technol. 13, 771-781 (1995).
[CrossRef]

Yu, S.

S. -C. Lee, R. Varrazza, and S. Yu, "Optical label processing and 10-Gb/s variable length optical packet switching using a 4x4 optical crosspoint switch," IEEE Photon. Technol. Lett. 17, 1085-1087 (2005).
[CrossRef]

IECE Japan

T. Kambayashi and Y. Suematsu, "Amplification characteristics of Integrated Twin-Guide Laser Amplifier," The Trans.IECE Japan,  E64, 489-496(1981).

IEEE J. Quantum Electron.

B. R. Bennett, R. A. Soref, and J. A. Del Alamo, "Carrier-induced change in refractive index of InP, GaAs and InGaAsP," IEEE J. Quantum Electron. 26, 113-122 (1990).
[CrossRef]

J. -P. Weber, "Optimization of the carrier-induced effective index change in InGaAsP waveguides¯application to tunable Bragg filters," IEEE J. Quantum Electron. 30, 1801-1816 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

S. -C. Lee, R. Varrazza, and S. Yu, "Optical label processing and 10-Gb/s variable length optical packet switching using a 4x4 optical crosspoint switch," IEEE Photon. Technol. Lett. 17, 1085-1087 (2005).
[CrossRef]

J. Lightwave Technol.

G. H. B. Thompson, "Analysis of optical directional couplers that include gain or loss and their application to semiconductor slab dielectric guides," J. Lightwave Technol. 4, 1678-1693 (1986).
[CrossRef]

A. E. Willner and W. Shieh, "Optimal spectral and power parameters for all-optical wavelength shifting: single stage, fanout, and cascadability," J. Lightwave Technol. 13, 771-781 (1995).
[CrossRef]

Other

A. Yariv, Optical electronics in Modern Communications, (Oxford University Press, Inc., Oxford, 1997).

K. Obermann, "All-optical wavelength conversion based on cross-gain modulation and four-wave mixing in semiconductor optical amplifiers," Ph.D. dissertation, Technische University, Berlin, Ger., 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Integrated twin-guide semiconductor optical amplifier

Fig. 2.
Fig. 2.

Schematic of the coupling region of ITG-SOA divided into a number of small sections with equal length.

Fig. 3.
Fig. 3.

Optical power distribution along the propagation direction: (a) Under small signal amplification; (b) The input power approaches 3 dB saturation point of ITG-SOA(800μm).

Fig. 4.
Fig. 4.

(a) Small signal gain spectra; (b) Static gain saturation characteristics.

Tables (3)

Tables Icon

Table 1. Layer Parameters of the ITG-SOA Used in the Calculations

Tables Icon

Table 2. Other Parameters Used in the Calculations

Tables Icon

Table 3. Comparison data of the SSG spectra

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d N 2 , i dt = J ed R j Γ 2 , i , j g 2 , i , j A c h v j P 2 , i , j av
R ( N 2 , i ) = c 1 N 2 , i + c 2 N 2 , i 2 + c 3 N 2 , i 3 ,
g 2 , i , j ( N 2 , i , λ j ) = g N ( N 2 , i N t ) a 1 ( λ j λ p ( N 2 , i ) ) 2 + a 2 ( λ j λ p ( N 2 , i ) ) 3
λ p ( N 2 , i ) = λ t a 3 ( N 2 , i N t ) ,
( A 1 , i + 1 , j ( z + Δ z ) A 2 , i + 1 , j ( z + Δ z ) ) = T ( A 1 , i , j ( z ) A 2 , i , j ( z ) ) ,
T = ( e j ϕ i , j κ i , j Δ z cos 2 ψ i , j + e j ϕ i , j κ i , j Δ z sin 2 ψ i , j sin ψ i , j cos ψ i , j ( e j ϕ i , j κ i , j Δ z e j ϕ i , j κ i , j Δ z ) sin ψ i , j cos ψ i , j ( e j ϕ i , j κ i , j Δ z e j ϕ i , j κ i , j Δ z ) e j ϕ i , j κ i , j Δ z sin 2 ψ i , j + e j ϕ i , j κ i , j Δ z cos 2 ψ i , j ) e g 2 net , i , j j 2 ( β 1 , i , j + β 2 , i , j ) 4 Δ z
ϕ i , j = [ ( Δ β i , j + j δ i , j ) 2 + 1 ] 1 / 2 ,
tan ψ i , j = Δ β i , j j δ i , j + ϕ i , j ,
Δ β i , j = ( β 1 , i , j β 2 , i , j ) 2 κ i , j ,
δ i , j = g 2 net , i , j 4 κ i , j ,
g 2 net , i , j = Γ 2 , i , j g 2 , i , j α int ,
A 2 , i + 1 , j ( z + Δ z ) = e ( g 2 net , i , j 2 j β 2 , i , j ) Δ z A 2 , i , j ( z ) .

Metrics